Paper: Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery
- Support different convolutional neural networks for cloud detection
- Support calculation of effective receptive field
- Multi-GPU training
- The supported networks are as follows:
Method | Reference |
---|---|
TL-Net | Transferring deep learning models for cloud detection between Landsat-8 and Proba-V |
MUNet | Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network |
UNet | U-net: Convolutional networks for biomedical image segmentation |
MF-CNN | Cloud detection in remote sensing images based on multiscale features-convolutional neural network |
MSCFF | Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors |
DeepLabv3+ | Encoder-decoder with atrous separable convolution for semantic image segmentation |
UNet-1 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-2 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-3 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-D2 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-D4 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-S3 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-S2 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
UNet-S1 | Understanding the Role of Receptive Field of Convolutional Neural Network for Cloud Detection in Landsat 8 OLI Imagery |
- The links of the trained models are as follows:
Input Band Number | Band | Download Link | Password |
---|---|---|---|
8 | red/green/blue/NIR/SWIR1/SWIR2/cirrus/TIR1 | Baidu Netdisk | 3tre |
6 | red/green/blue/NIR/SWIR1/SWIR2 | Baidu Netdisk | m6nt |
4 | red/green/blue/NIR | Baidu Netdisk | qy48 |
The trained model for the input data of 8 channels can also be downloaded from Google Drive
This is a PyTorch(1.7.1) implementation of varied convolutional neural networks (CNNs) for cloud detection in Landsat 8 OLI imagery. Currently, we train these networks using L8 Biome dataset. The related paper aims to understand the role of receptive field of CNN for cloud detection in Landsat 8 OLI imagery and is under review.
The code was tested with Anaconda and Python 3.7.3.
-
For PyTorch dependency, see pytorch.org for more details.
-
For Captum dependency used for computing the effective receptive field, see captum.ai for more details.
-
For GDAL dependency used for reading and writing raster data, use version 2.3.3.
Follow steps below to train your model
-
Configure your dataset path in config.py
def get_config_tr(net_name): ... parser.add_argument('--train-root', type=str, default='./example/train/Images', help='image root of train set') parser.add_argument('--train-list', type=str, default='./example/train/train.txt', help='image list of train set') parser.add_argument('--val-root', type=str, default='./example/val/Images', help='image root of validation set') parser.add_argument('--val-list', type=str, default='./example/val/val.txt', help='image list of validation set')
-
Configure the network you want to use in config.py
def get_config_tr(net_name): ... parser.add_argument('--net', type=str, default='{}'.format(net_name), choices=['DeeplabV3Plus', 'MFCNN', 'MSCFF', 'MUNet', 'TLNet', 'UNet', 'UNet-3', 'UNet-2', 'UNet-1', 'UNet-dilation', 'UNetS3', 'UNetS2', 'UNetS1'], help='network name (default: ?)')
or train.py
def main(): # choices=['DeeplabV3Plus', 'MFCNN', 'MSCFF', 'MUNet', 'TLNet', 'UNet', 'UNet-3', 'UNet-2', 'UNet-1', 'UNet-dilation', 'UNetS3', 'UNetS2', 'UNetS1'] args = get_config_tr('TLNet')
-
Run script
python train.py
-
inference.py is used for predicting cloud detection results and output accuracies.
-
erf.py is used for computing the effective receptive field
-
comparator.py is used for computing the accuracies of the predicted results.