-
Notifications
You must be signed in to change notification settings - Fork 28
2nd level command lines
All second-level tests can be called via limo_random_select.m. Below are examples from the tutorial.
chanlocs = XXX\derivatives\limo_gp_level_chanlocs.mat';
files = {'XXX\con4_files_FaceRepAll_GLM_Channels_Time_WLS.txt'};
LIMOPath = limo_random_select('one sample t-test',chanlocs,'LIMOfiles',files,...
'analysis_type','Full scalp analysis', 'type','Channels','nboot',1000,'tfce',0);
chanlocs = 'XXX\derivatives\limo_gp_level_chanlocs.mat';
files = {'XXX\con1_files_FaceRepAll_GLM_Channels_Time_WLS.txt' ; 'XXX\con3_files_FaceRepAll_GLM_Channels_Time_WLS.txt'};
LIMOPath = limo_random_select('paired t-test',chanlocs,'LIMOfiles',files,...
'analysis_type','Full scalp analysis', 'type','Channels','nboot',1000,'tfce',0);
chanlocs = XXX\derivatives\limo_gp_level_chanlocs.mat';
Files{1} = ‘XXX\LIMO_Face_detection\Beta_files_Gp1_Faces_GLM_Channels_Frequency_WLS.txt';
Files{2} = 'XXX\LIMO_Face_detection\Beta_files_Gp2_Faces_GLM_Channels_Frequency_WLS.txt';
LIMOPath = limo_random_select('two-samples t-test',chanlocs,'LIMOfiles',Files,...
'analysis_type','Full scalp analysis', 'type','Channels','parameter',[1;1],'nboot',1000,'tfce',0);
chanlocs = XXX\derivatives\limo_gp_level_chanlocs.mat';
LIMOPath = limo_random_select('regression',chanlocs,'LIMOfiles',...
'XXX\LIMO_Face_detection\con4_files_FaceRepAll_GLM_Channels_Time_WLS.txt', ...
'analysis type','Full scalp analysis', type','Channels','nboot',0,'tfce',0,'regressor',...
'XXX\LIMO_Face_detection\2nd_level\regression\age_regressor.mat',...
'zscore','Yes','skip design check','Yes')
chanlocs = 'XXX\derivatives\limo_gp_level_chanlocs.mat';
Files = cell(2,1); % groups in rows, repeated measures in columns
Files{1} = 'XXX\LIMO_Face_detection\Beta_files_Gp1_Faces_GLM_Channels_Time_WLS.txt';
Files{2} = 'XXX\LIMO_Face_detection\Beta_files_Gp2_Faces_GLM_Channels_Time_WLS.txt';
LIMOPath = limo_random_select('Repeated Measures ANOVA',chanlocs,'LIMOfiles',Files,...
'analysis_type','Full scalp analysis','parameters',{[1 2 3];[1 2 3]},...
'factor names',{'face'},'type','Channels','nboot',1000,'tfce',0,'skip design check','yes');
We can easily create summary statistics using limo_central_tendency_and_ci.m - for instance below we compute mean (across subjects) of the weighted mean (across trials) pooling conditions 7, 8 , 9 (unfamiliar faces) all in one line of code.
chan_loc = 'XXX\derivatives\limo_gp_level_chanlocs.mat';
Files = 'XXX\....\LIMO_files_FaceRepAll_GLM_Channels_Frequency_WLS.txt';
parameters = [7 8 9];
savename = 'XXX\derivatives\...\unfamiliar.mat';
limo_central_tendency_and_ci(Files, parameters, chan_loc, 'Weighted mean', 'Mean', [],savename)
Downsampling or not before analyzing
Defining conditions defining
~ categorical.txt ~continuous.txt
EEGLAB-STUDY: run, session, condition and group
Basic Stats: LIMO tests and CI
Repeated measures ANOVA
Results in the workspace
Results in LIMO.cache
Checking data under the plots
Reordering plots
Compute & Plot conditions
Compute & Plot differences
Channel neighbourhood
Editing a neighbourhood matrix
Scripting 1st level
Debugging 1st level errors
Skip 1st level
Scripting 2nd level
Getting stats results with a script