-
Notifications
You must be signed in to change notification settings - Fork 247
Implementing thermal solver
The following tutorial will explain how to implement a Solver
from scratch, in this case applied to the particular case of the thermal problem, following the lines of the already presented on the other tutorials. We will skip the most advanced points of the construction of the Solver
and we will create a basic working solver for the sake of academic purposes, so the resulting file will not coincide with the real solver on the repository.
The solver as any element of Kratos requires to import the corresponding libraries and applications. Like out objective on mind is to create a thermal problem, we will import the base KratosMultiphysics
library as well as the ConvectionDiffusionApplication
. For importing files from the filesystem we will import os
python library, which will be helpful.
from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7
# Importing the Kratos Library
import KratosMultiphysics
# Import applications
import KratosMultiphysics.ConvectionDiffusionApplication as ConvectionDiffusionApplication
# Other imports
import os
We will create a Solver
, following was is done in other applications Solver
, for the sake of consistency, so in first place we define the function CreateSolver
, which is common among all the solvers and therefore it is necessary to be called that way. This function will use as input a Model
and configuration Parameters
:
def CreateSolver(model, custom_settings):
return ConvectionDiffusionSolver(model, custom_settings)
As we see this function call a class called ConvectionDiffusionSolver
, so we need to define our solver in first place, for that we define the constructor or __init__
function:
class ConvectionDiffusionSolver(object):
"""The base class for convection-diffusion solvers.
This class provides functions for importing and exporting models,
adding nodal variables and dofs and solving each solution step.
"""
def __init__(self, model, custom_settings):
default_settings = KratosMultiphysics.Parameters("""
{
"model_part_name" : "ThermalModelPart",
"echo_level": 0,
"buffer_size": 2,
"model_import_settings": {
"input_type": "mdpa",
"input_filename": "unknown_name"
},
"computing_model_part_name" : "Thermal",
"material_import_settings" :{
"materials_filename": ""
},
"clear_storage": false,
"residual_relative_tolerance": 1.0e-4,
"residual_absolute_tolerance": 1.0e-9,
"max_iteration": 10,
"linear_solver_settings":{
"solver_type": "BICGSTABSolver",
"preconditioner_type": "DiagonalPreconditioner",
"max_iteration": 5000,
"tolerance": 1e-9,
"scaling": false
},
"element_replace_settings" : {
"element_name" : "EulerianConvDiff",
"condition_name" : "Condition"
},
"problem_domain_sub_model_part_list": ["conv_diff_body"],
"processes_sub_model_part_list": [""]
}
""")
# Overwrite the default settings with user-provided parameters.
self.settings = custom_settings
self.settings.ValidateAndAssignDefaults(default_settings)
self.model = model
model_part_name = self.settings["model_part_name"].GetString()
self.main_model_part = self.model[model_part_name]
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionSolver]:: ", "Construction finished")
First we define the default Parameters
, which will overwrite the not define configurations of our custom_settings
, this is done with the ValidateAndAssignDefaults
method. We define the main_model_part
as a part of the solver, using the self
to define it as an instance attribute.
The following are common methods defined in all solvers in order to have an interoperability between them to couple different physical problems.
The AddVariables
is the liable on adding the nodal historical variables to the model part. We will need to define a buffer in order to be able to access this historical variables. We will see how in following sections.
We add the variables corresponding to the standard thermal convection-diffusion problem. We will need to add this variables to the CONVECTION_DIFFUSION_SETTINGS
(this is something specific of the ConvectionDiffusionAplication
, and is done in order to solve different types convection diffusion problems).
def AddVariables(self):
''' Add nodal solution step variables ( later add to CONVECTION_DIFFUSION_SETTINGS)
'''
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DENSITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONDUCTIVITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.TEMPERATURE)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.HEAT_FLUX)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.FACE_HEAT_FLUX)
self.main_model_part.AddNodalSolutionStepVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONVECTION_VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.MESH_VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.SPECIFIC_HEAT)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION_FLUX)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Variables ADDED")
In this case we add to the nodes the degrees of freedom corresponding to the problems we want to solve, in our case only the TEMPERATURE
.
def AddDofs(self):
KratosMultiphysics.VariableUtils().AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX, self.main_model_part)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")
We the VariableUtils
class, which allows us to do this operation in parallel, in case we want to use the methods available directly on the Node
class we can do:
def AddDofs(self):
for node in self.main_model_part.Nodes:
node.AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")
We read the *.mdpa
file for that we use the class ModelPartIO
, which is the class in charge of managing the write/read procedures.
def ReadModelPart(self):
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "Reading model part.")
problem_path = os.getcwd()
input_filename = self.settings["model_import_settings"]["input_filename"].GetString()
# Import model part from mdpa file.
KratosMultiphysics.ModelPartIO(input_filename).ReadModelPart(self.main_model_part)
KratosMultiphysics.Logger.PrintInfo("ModelPart", self.main_model_part)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished reading model part.")
After reading the model part we need to do some operations, as checking the mesh orientation, assigning the physical elements and conditions to the dummy Element
/Condition
and filling the buffer.
We mean for dummy Condition
and Element
that only contain a geometry and don't solve any physical problem, this is done for the sake of interoperability, which allows us to use the same mesh for the fluid and thermal problem.
First we define the reading of the properties of the problem. We use the read_materials_process
defined on the core of Kratos.
def _execute_after_reading(self):
"""Import materials. """
materials_filename = self.settings["material_import_settings"]["materials_filename"].GetString()
if (materials_filename != ""):
import read_materials_process
# Create a dictionary of model parts.
# Add constitutive laws and material properties from json file to model parts.
read_materials_process.ReadMaterialsProcess(self.model, self.settings["material_import_settings"])
# We set the properties that are nodal
self._assign_nodally_properties()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were successfully imported.")
else:
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were not imported.")
In the case of the convection diffusion problems, the properties are not read from the Property
but directly from the nodal values, so we create a method in order to copy this properties into the nodes of the mesh:
def _assign_nodally_properties(self):
# We transfer the values of the con.diff variables to the nodes
with open(self.settings["material_import_settings"]["materials_filename"].GetString(), 'r') as parameter_file:
materials = KratosMultiphysics.Parameters(parameter_file.read())
for i in range(materials["properties"].size()):
model_part = self.main_model_part.GetSubModelPart(materials["properties"][i]["model_part_name"].GetString())
mat = materials["properties"][i]["Material"]
for key, value in mat["Variables"].items():
var = KratosMultiphysics.KratosGlobals.GetVariable(key)
if (self._check_variable_to_set(var)):
if value.IsDouble():
KratosMultiphysics.VariableUtils().SetScalarVar(var, value.GetDouble(), model_part.Nodes)
elif value.IsVector():
KratosMultiphysics.VariableUtils().SetVectorVar(var, value.GetVector(), model_part.Nodes)
else:
raise ValueError("Type of value is not available")
We define the Parameters
necessaries for the replace the Element
/Condition
, which depend on the configuration parameters, and the geometry of the problem (2D/3D, triangle, quadrilaterals, etc...). We will use the class ReplaceElementsAndConditionsProcess
to replace these elements and conditions.
def _get_element_condition_replace_settings(self):
num_nodes_elements = 0
if (len(self.main_model_part.Elements) > 0):
num_nodes_elements = len(self.main_model_part.Elements[1].GetNodes())
## Elements
if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
if (num_nodes_elements == 3):
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D")
else:
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D4N")
elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
if (self.settings["element_replace_settings"]["element_name"].GetString() == "EulerianConvDiff"):
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff3D")
else:
raise Exception("DOMAIN_SIZE not set")
## Conditions
num_nodes_conditions = 0
if (len(self.main_model_part.Conditions) > 0):
num_nodes_conditions = len(self.main_model_part.Conditions[1].GetNodes())
if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
self.settings["element_replace_settings"]["condition_name"].SetString("LineCondition2D2N")
elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
self.settings["element_replace_settings"]["condition_name"].SetString("SurfaceCondition3D3N")
else:
raise Exception("DOMAIN_SIZE not set")
return self.settings["element_replace_settings"]
Fill the buffer is as easy as:
def _set_and_fill_buffer(self):
"""Prepare nodal solution step data containers and time step information. """
# Set the buffer size for the nodal solution steps data. Existing nodal
# solution step data may be lost.
required_buffer_size = self.settings["buffer_size"].GetInt()
current_buffer_size = self.main_model_part.GetBufferSize()
buffer_size = max(current_buffer_size, required_buffer_size)
self.main_model_part.SetBufferSize(buffer_size)
# Cycle the buffer. This sets all historical nodal solution step data to
# the current value and initializes the time stepping in the process info.
delta_time = self.main_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME]
time = self.main_model_part.ProcessInfo[KratosMultiphysics.TIME]
step =-buffer_size
time = time - delta_time * buffer_size
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time)
for i in range(0, buffer_size):
step = step + 1
time = time + delta_time
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step)
self.main_model_part.CloneTimeStep(time)
Finally, now that we have all the tools to prepare the model part we can define the method:
def PrepareModelPartForSolver(self):
# Check and prepare computing model part and import constitutive laws.
self._execute_after_reading()
throw_errors = False
KratosMultiphysics.TetrahedralMeshOrientationCheck(self.main_model_part, throw_errors).Execute()
KratosMultiphysics.ReplaceElementsAndConditionsProcess(self.main_model_part,self._get_element_condition_replace_settings()).Execute()
self._set_and_fill_buffer()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "ModelPart prepared for Solver.")
In order to initialize the solver we need to create the strategy, which will be Newton-Raphson in our case
. Additionally we will define the CONVECTION_DIFFUSION_SETTINGS
which can be used by the elements and conditions from the application.
def Initialize(self):
"""Perform initialization after adding nodal variables and dofs to the main model part. """
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Initializing ...")
# We define the convection diffusion settings
convention_diffusion_settings = KratosMultiphysics.ConvectionDiffusionSettings()
convention_diffusion_settings.SetDensityVariable(KratosMultiphysics.DENSITY)
convention_diffusion_settings.SetDiffusionVariable(KratosMultiphysics.CONDUCTIVITY)
convention_diffusion_settings.SetUnknownVariable(KratosMultiphysics.TEMPERATURE)
convention_diffusion_settings.SetVolumeSourceVariable(KratosMultiphysics.HEAT_FLUX)
convention_diffusion_settings.SetSurfaceSourceVariable(KratosMultiphysics.FACE_HEAT_FLUX)
convention_diffusion_settings.SetProjectionVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
convention_diffusion_settings.SetConvectionVariable(KratosMultiphysics.CONVECTION_VELOCITY)
convention_diffusion_settings.SetMeshVelocityVariable(KratosMultiphysics.MESH_VELOCITY)
convention_diffusion_settings.SetVelocityVariable(KratosMultiphysics.VELOCITY)
convention_diffusion_settings.SetSpecificHeatVariable(KratosMultiphysics.SPECIFIC_HEAT)
convention_diffusion_settings.SetReactionVariable(KratosMultiphysics.REACTION_FLUX)
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.CONVECTION_DIFFUSION_SETTINGS, convention_diffusion_settings)
# The mechanical solution strategy is created here if it does not already exist.
computing_model_part = self.main_model_part # We will use the main model part
#Variable defining the temporal scheme (0: Forward Euler, 1: Backward Euler, 0.5: Crank-Nicolson)
computing_model_part.ProcessInfo[ConvectionDiffusionApplication.THETA] = 0.5
computing_model_part.ProcessInfo[KratosMultiphysics.DYNAMIC_TAU] = 1.0
conv_diff_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticScheme()
import linear_solver_factory
linear_solver = linear_solver_factory.ConstructSolver(self.settings["linear_solver_settings"])
conv_diff_convergence_criterion = KratosMultiphysics.ResidualCriteria(self.settings["residual_relative_tolerance"].GetDouble(), self.settings["residual_absolute_tolerance"].GetDouble())
builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(linear_solver)
self.conv_diff_strategy = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(computing_model_part, conv_diff_scheme, linear_solver, conv_diff_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), True, False, False)
self.conv_diff_strategy.SetEchoLevel(self.settings["echo_level"].GetInt())
self.conv_diff_strategy.Initialize()
self.conv_diff_strategy.Check()
if self.settings["clear_storage"].GetBool():
self.conv_diff_strategy.Clear()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished initialization.")
The Solver
as well as the strategy, has the same solving steps as the strategies (Newton-Rapshon and so on), this methods are InitializeSolutionStep
, Predict
, SolveSolutionStep
and FinalizeSolutionStep
, which can be call all together in only one method Solve
.
def Solve(self):
if self.settings["clear_storage"].GetBool():
self.conv_diff_strategy.Clear()
self.conv_diff_strategy.Solve()
def InitializeSolutionStep(self):
self.conv_diff_strategy.InitializeSolutionStep()
def Predict(self):
self.conv_diff_strategy.Predict()
def SolveSolutionStep(self):
is_converged = self.conv_diff_strategy.SolveSolutionStep()
return is_converged
def FinalizeSolutionStep(self):
self.conv_diff_strategy.FinalizeSolutionStep()
Our thermal solver will be like the following:
from __future__ import print_function, absolute_import, division # makes KratosMultiphysics backward compatible with python 2.6 and 2.7
# Importing the Kratos Library
import KratosMultiphysics
# Import applications
import KratosMultiphysics.ConvectionDiffusionApplication as ConvectionDiffusionApplication
# Other imports
import os
def CreateSolver(main_model_part, custom_settings):
return ConvectionDiffusionSolver(main_model_part, custom_settings)
class ConvectionDiffusionSolver(object):
"""The base class for convection-diffusion solvers.
This class provides functions for importing and exporting models,
adding nodal variables and dofs and solving each solution step.
"""
def __init__(self, model, custom_settings):
default_settings = KratosMultiphysics.Parameters("""
{
"model_part_name" : "ThermalModelPart",
"echo_level": 0,
"buffer_size": 2,
"model_import_settings": {
"input_type": "mdpa",
"input_filename": "unknown_name"
},
"computing_model_part_name" : "Thermal",
"material_import_settings" :{
"materials_filename": ""
},
"clear_storage": false,
"residual_relative_tolerance": 1.0e-4,
"residual_absolute_tolerance": 1.0e-9,
"max_iteration": 10,
"linear_solver_settings":{
"solver_type": "BICGSTABSolver",
"preconditioner_type": "DiagonalPreconditioner",
"max_iteration": 5000,
"tolerance": 1e-9,
"scaling": false
},
"element_replace_settings" : {
"element_name" : "EulerianConvDiff",
"condition_name" : "Condition"
},
"problem_domain_sub_model_part_list": ["conv_diff_body"],
"processes_sub_model_part_list": [""]
}
""")
# Overwrite the default settings with user-provided parameters.
self.settings = custom_settings
self.settings.ValidateAndAssignDefaults(default_settings)
self.model = model
model_part_name = self.settings["model_part_name"].GetString()
self.main_model_part = self.model[model_part_name]
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionSolver]:: ", "Construction finished")
def AddVariables(self):
''' Add nodal solution step variables ( later add to CONVECTION_DIFFUSION_SETTINGS)
'''
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.DENSITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONDUCTIVITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.TEMPERATURE)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.HEAT_FLUX)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.FACE_HEAT_FLUX)
self.main_model_part.AddNodalSolutionStepVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.CONVECTION_VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.MESH_VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.VELOCITY)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.SPECIFIC_HEAT)
self.main_model_part.AddNodalSolutionStepVariable(KratosMultiphysics.REACTION_FLUX)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Variables ADDED")
def AddDofs(self):
for node in self.main_model_part.Nodes:
node.AddDof(KratosMultiphysics.TEMPERATURE, KratosMultiphysics.REACTION_FLUX)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "DOF's ADDED")
def ReadModelPart(self):
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "Reading model part.")
problem_path = os.getcwd()
input_filename = self.settings["model_import_settings"]["input_filename"].GetString()
# Import model part from mdpa file.
KratosMultiphysics.ModelPartIO(input_filename).ReadModelPart(self.main_model_part)
KratosMultiphysics.Logger.PrintInfo("ModelPart", self.main_model_part)
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished reading model part.")
def _execute_after_reading(self):
"""Import materials. """
materials_filename = self.settings["material_import_settings"]["materials_filename"].GetString()
if (materials_filename != ""):
import read_materials_process
# Add constitutive laws and material properties from json file to model parts.
read_materials_process.ReadMaterialsProcess(self.model, self.settings["material_import_settings"])
# We set the properties that are nodal
self._assign_nodally_properties()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were successfully imported.")
else:
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Materials were not imported.")
def _assign_nodally_properties(self):
# We transfer the values of the con.diff variables to the nodes
with open(self.settings["material_import_settings"]["materials_filename"].GetString(), 'r') as parameter_file:
materials = KratosMultiphysics.Parameters(parameter_file.read())
for i in range(materials["properties"].size()):
model_part = self.main_model_part.GetSubModelPart(materials["properties"][i]["model_part_name"].GetString())
mat = materials["properties"][i]["Material"]
for key, value in mat["Variables"].items():
var = KratosMultiphysics.KratosGlobals.GetVariable(key)
if (self._check_variable_to_set(var)):
if value.IsDouble():
KratosMultiphysics.VariableUtils().SetScalarVar(var, value.GetDouble(), model_part.Nodes)
elif value.IsVector():
KratosMultiphysics.VariableUtils().SetVectorVar(var, value.GetVector(), model_part.Nodes)
else:
raise ValueError("Type of value is not available")
def _get_element_condition_replace_settings(self):
num_nodes_elements = 0
if (len(self.main_model_part.Elements) > 0):
num_nodes_elements = len(self.main_model_part.Elements[1].GetNodes())
## Elements
if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
if (num_nodes_elements == 3):
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D")
else:
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff2D4N")
elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
if (self.settings["element_replace_settings"]["element_name"].GetString() == "EulerianConvDiff"):
self.settings["element_replace_settings"]["element_name"].SetString("EulerianConvDiff3D")
else:
raise Exception("DOMAIN_SIZE not set")
## Conditions
num_nodes_conditions = 0
if (len(self.main_model_part.Conditions) > 0):
num_nodes_conditions = len(self.main_model_part.Conditions[1].GetNodes())
if self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 2:
self.settings["element_replace_settings"]["condition_name"].SetString("LineCondition2D2N")
elif self.main_model_part.ProcessInfo[KratosMultiphysics.DOMAIN_SIZE] == 3:
self.settings["element_replace_settings"]["condition_name"].SetString("SurfaceCondition3D3N")
else:
raise Exception("DOMAIN_SIZE not set")
return self.settings["element_replace_settings"]
def _set_and_fill_buffer(self):
"""Prepare nodal solution step data containers and time step information. """
# Set the buffer size for the nodal solution steps data. Existing nodal
# solution step data may be lost.
required_buffer_size = self.settings["buffer_size"].GetInt()
current_buffer_size = self.main_model_part.GetBufferSize()
buffer_size = max(current_buffer_size, required_buffer_size)
self.main_model_part.SetBufferSize(buffer_size)
# Cycle the buffer. This sets all historical nodal solution step data to
# the current value and initializes the time stepping in the process info.
delta_time = self.main_model_part.ProcessInfo[KratosMultiphysics.DELTA_TIME]
time = self.main_model_part.ProcessInfo[KratosMultiphysics.TIME]
step =-buffer_size
time = time - delta_time * buffer_size
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.TIME, time)
for i in range(0, buffer_size):
step = step + 1
time = time + delta_time
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.STEP, step)
self.main_model_part.CloneTimeStep(time)
def PrepareModelPartForSolver(self):
# Check and prepare computing model part and import constitutive laws.
self._execute_after_reading()
throw_errors = False
KratosMultiphysics.TetrahedralMeshOrientationCheck(self.main_model_part, throw_errors).Execute()
KratosMultiphysics.ReplaceElementsAndConditionsProcess(self.main_model_part,self._get_element_condition_replace_settings()).Execute()
self._set_and_fill_buffer()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]::", "ModelPart prepared for Solver.")
def Initialize(self):
"""Perform initialization after adding nodal variables and dofs to the main model part. """
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Initializing ...")
# We define the convection diffusion settings
convention_diffusion_settings = KratosMultiphysics.ConvectionDiffusionSettings()
convention_diffusion_settings.SetDensityVariable(KratosMultiphysics.DENSITY)
convention_diffusion_settings.SetDiffusionVariable(KratosMultiphysics.CONDUCTIVITY)
convention_diffusion_settings.SetUnknownVariable(KratosMultiphysics.TEMPERATURE)
convention_diffusion_settings.SetVolumeSourceVariable(KratosMultiphysics.HEAT_FLUX)
convention_diffusion_settings.SetSurfaceSourceVariable(KratosMultiphysics.FACE_HEAT_FLUX)
convention_diffusion_settings.SetProjectionVariable(ConvectionDiffusionApplication.PROJECTED_SCALAR1)
convention_diffusion_settings.SetConvectionVariable(KratosMultiphysics.CONVECTION_VELOCITY)
convention_diffusion_settings.SetMeshVelocityVariable(KratosMultiphysics.MESH_VELOCITY)
convention_diffusion_settings.SetVelocityVariable(KratosMultiphysics.VELOCITY)
convention_diffusion_settings.SetSpecificHeatVariable(KratosMultiphysics.SPECIFIC_HEAT)
convention_diffusion_settings.SetReactionVariable(KratosMultiphysics.REACTION_FLUX)
self.main_model_part.ProcessInfo.SetValue(KratosMultiphysics.CONVECTION_DIFFUSION_SETTINGS, convention_diffusion_settings)
# The mechanical solution strategy is created here if it does not already exist.
computing_model_part = self.main_model_part # We will use the main model part
#Variable defining the temporal scheme (0: Forward Euler, 1: Backward Euler, 0.5: Crank-Nicolson)
computing_model_part.ProcessInfo[ConvectionDiffusionApplication.THETA] = 0.5
computing_model_part.ProcessInfo[KratosMultiphysics.DYNAMIC_TAU] = 1.0
conv_diff_scheme = KratosMultiphysics.ResidualBasedIncrementalUpdateStaticScheme()
import linear_solver_factory
linear_solver = linear_solver_factory.ConstructSolver(self.settings["linear_solver_settings"])
conv_diff_convergence_criterion = KratosMultiphysics.ResidualCriteria(self.settings["residual_relative_tolerance"].GetDouble(), self.settings["residual_absolute_tolerance"].GetDouble())
builder_and_solver = KratosMultiphysics.ResidualBasedBlockBuilderAndSolver(linear_solver)
self.conv_diff_strategy = KratosMultiphysics.ResidualBasedNewtonRaphsonStrategy(computing_model_part, conv_diff_scheme, linear_solver, conv_diff_convergence_criterion, builder_and_solver, self.settings["max_iteration"].GetInt(), True, False, False)
self.conv_diff_strategy.SetEchoLevel(self.settings["echo_level"].GetInt())
self.conv_diff_strategy.Initialize()
self.conv_diff_strategy.Check()
if self.settings["clear_storage"].GetBool():
self.conv_diff_strategy.Clear()
KratosMultiphysics.Logger.PrintInfo("::[ConvectionDiffusionBaseSolver]:: ", "Finished initialization.")
def Solve(self):
if self.settings["clear_storage"].GetBool():
self.conv_diff_strategy.Clear()
self.conv_diff_strategy.Solve()
def InitializeSolutionStep(self):
self.conv_diff_strategy.InitializeSolutionStep()
def Predict(self):
self.conv_diff_strategy.Predict()
def SolveSolutionStep(self):
is_converged = self.conv_diff_strategy.SolveSolutionStep()
return is_converged
def FinalizeSolutionStep(self):
self.conv_diff_strategy.FinalizeSolutionStep()
- Getting Kratos (Last compiled Release)
- Compiling Kratos
- Running an example from GiD
- Kratos input files and I/O
- Data management
- Solving strategies
- Manipulating solution values
- Multiphysics
- Video tutorials
- Style Guide
- Authorship of Kratos files
- Configure .gitignore
- How to configure clang-format
- How to use smart pointer in Kratos
- How to define adjoint elements and response functions
- Visibility and Exposure
- Namespaces and Static Classes
Kratos structure
Conventions
Solvers
Debugging, profiling and testing
- Compiling Kratos in debug mode
- Debugging Kratos using GDB
- Cross-debugging Kratos under Windows
- Debugging Kratos C++ under Windows
- Checking memory usage with Valgind
- Profiling Kratos with MAQAO
- Creating unitary tests
- Using ThreadSanitizer to detect OMP data race bugs
- Debugging Memory with ASAN
HOW TOs
- How to create applications
- Python Tutorials
- Kratos For Dummies (I)
- List of classes and variables accessible via python
- How to use Logger
- How to Create a New Application using cmake
- How to write a JSON configuration file
- How to Access DataBase
- How to use quaternions in Kratos
- How to do Mapping between nonmatching meshes
- How to use Clang-Tidy to automatically correct code
- How to use the Constitutive Law class
- How to use Serialization
- How to use GlobalPointerCommunicator
- How to use PointerMapCommunicator
- How to use the Geometry
- How to use processes for BCs
- How to use Parallel Utilities in futureproofing the code
- Porting to Pybind11 (LEGACY CODE)
- Porting to AMatrix
- How to use Cotire
- Applications: Python-modules
- How to run multiple cases using PyCOMPSs
- How to apply a function to a list of variables
- How to use Kratos Native sparse linear algebra
Utilities
Kratos API
Kratos Structural Mechanics API