A python library for NER (Named Entity Recognition) evaluation
We can evaluate the performance of NER by distinguishing between known entities and unknown entities using this library.
- Tagging Scheme
- IOB2
- BIOES
- metrics
- precision
- recall
- f1
- python3
pip install git+https://github.com/Andolab/miNER#egg=miNER
>>> from miner import Miner
>>> answers = [
'B-PSN O O B-LOC O O O O'.split(' '),
'B-PSN I-PSN O O B-LOC I-LOC O O O O'.split(' '),
'S-PSN O O S-PSN O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> predicts = [
'B-PSN O O B-LOC O O O O'.split(' '),
'B-PSN B-PSN O O B-LOC I-LOC O O O O'.split(' '),
'S-PSN O O O O O B-LOC I-LOC E-LOC O O O O'.split(' ')
]
>>> sentences = [
'花子 さん は 東京 に 行き まし た'.split(' '),
'山田 太郎 君 は 東京 駅 に 向かい まし た'.split(' '),
'花子 さん と ボブ くん は 東京 スカイ ツリー に 行き まし た'.split(' '),
]
>>> knowns = {'PSN': ['花子'], 'LOC': ['東京']} # known words (words included in training data)
>>> m = Miner(answers, predicts, sentences, knowns)
>>> m.default_report(True)
precision recall f1_score num
PSN 0.500 0.500 0.500 4
LOC 1.000 1.000 1.000 3
>>> m.return_predict_named_entities()
{'known': {'PSN': ['花子'], 'LOC': ['東京']}, 'unknown': {'PSN': ['太郎', '山田'], 'LOC': ['東京駅', '東京スカイツリー']}}
method | description |
---|---|
default_report(print_) | return result of named entity recognition. if print_=True, showing result |
known_only_report(print_) | return result of known named entity recognition. |
unknown_only_report(print_) | return result of unknown named entity recognition. |
return_predict_named_entities() | return named entities along predicted label(predicts). |
return_answer_named_entities() | return named entities along answer label(answer). |
MIT