Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prediction: modeling #241

Merged
merged 2 commits into from
Dec 10, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -50,4 +50,6 @@ __pycache__/
connect.db
not_sqlalchemy/
run_flask_app.bat
venv
venv

dataset-with-metas.json
Empty file.
26 changes: 26 additions & 0 deletions services/prediction/classification/classification.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.metrics import accuracy_score

def classification (X_train, X_test, y_train, y_test, headers, algorithm):
clf = None
if algorithm == 'decisionTree':
clf = tree.DecisionTreeClassifier()
elif algorithm == 'gradientBoosting':
clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=3, random_state=0)
elif algorithm == 'adaBoost':
clf = AdaBoostClassifier(n_estimators=100)
else:
print('using random forest')
clf = RandomForestClassifier(max_depth=3, random_state=0)

clf = clf.fit(X_train, y_train)
predict_res = clf.predict(X_test)
score = accuracy_score(y_test, predict_res)
diffs = []
for i in range(len(y_test)):
if y_test[i] != predict_res[i]:
diffs.append(0)
else:
diffs.append(1)
return score, diffs
93 changes: 93 additions & 0 deletions services/prediction/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
from flask import Flask, request
from flask_cors import CORS
import json
import numpy as np
import random
from classification.classification import classification
from regression.regression import regression
from transform import makeTrainingData

app = Flask(__name__)
cors = CORS(app, resources={r"/api/*": {"origins": "*"}})

def controlSplitTrainTest (X, y, split_states: 'list[int]'):
train_indices = []
test_indices = []
for i in range(len(split_states)):
if split_states[i] == 1:
train_indices.append(i)
if split_states[i] == 0:
test_indices.append(i)
train_indices = np.array(train_indices)
test_indices = np.array(test_indices)
X_train = X.take(train_indices, axis=0)
X_test = X.take(test_indices, axis=0)
y_train = y.take(train_indices, axis=0)
y_test = y.take(test_indices, axis=0)
return X_train, X_test, y_train, y_test

def mockSplitIndices (size: int, ratio: float):
indices = []
for i in range(size):
if random.random() > ratio:
indices.append(1)
else:
indices.append(0)
return indices

@app.route('/api/ping', methods=['GET'])
def ping():
return {
"success": True
}

@app.route("/api/train_test", methods=['POST'])
def runClassificationModel():
try:
dataset = json.loads(request.data)
data = dataset['dataSource']
fields = dataset['fields']
model = json.loads(request.data)['model']
features = model['features']
targets = model['targets']
algorithm = model['algorithm']
mode = dataset['mode']
trainTestSplitIndices = []
if 'trainTestSplitIndices' in dataset:
trainTestSplitIndices = dataset['trainTestSplitIndices']
else:
trainTestSplitIndices = mockSplitIndices(len(data), 0.2)
testset_indices = []
for i in range(len(trainTestSplitIndices)):
if trainTestSplitIndices[i] == 0:
testset_indices.append(i)
X, y, headers = makeTrainingData(data=data, fields=fields, features=features, target=targets[0])
# print(X.shape, y.shape, len(headers))
X_train, X_test, y_train, y_test = controlSplitTrainTest(X, y, trainTestSplitIndices)
# print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
score = 0
diffs = []
if mode == 'classification':
score, diffs = classification(X_train, X_test, y_train, y_test, headers, algorithm)
elif mode == 'regression':
score, diffs = regression(X_train, X_test, y_train, y_test, headers, algorithm)
if len(diffs) != len(testset_indices):
print('[warning] diffs and testset_indices have different lengths')
result = []
for i in range(len(diffs)):
result.append([testset_indices[i], diffs[i]])
return {
"success": True,
"data": {
"accuracy": score,
"result": result
}
}
except Exception as e:
return {
"success": False,
"message": str(e)
}

if __name__ == '__main__':
app.run(host= '0.0.0.0',port=5533,debug=True)
Empty file.
35 changes: 35 additions & 0 deletions services/prediction/regression/regression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, r2_score
from sklearn import tree, ensemble
import numpy as np

def regression (X_train, X_test, y_train, y_test, headers, algorithm):
regr = None
if algorithm == 'linearRegression':
regr = linear_model.LinearRegression()
elif algorithm == 'lasso':
regr = linear_model.Lasso(alpha=0.1)
elif algorithm == 'ridge':
regr = linear_model.Ridge(alpha=0.5)
elif algorithm == 'decisionTree':
regr = tree.DecisionTreeRegressor()
elif algorithm == 'randomForest':
regr = ensemble.RandomForestRegressor(max_depth=3, random_state=50, oob_score=True)
else:
regr = linear_model.ElasticNet(alpha=0.1, l1_ratio=0.7)

regr.fit(X_train, y_train)
predict_res = regr.predict(X_test)
score = regr.score(X_test, y_test)
# score = r2_score(y_test, predict_res)
diffs = []
std = np.std(y_test)
for i in range(len(y_test)):
z_score = (y_test[i] - predict_res[i]) / std
if z_score > 2 or z_score < -2:
diffs.append(0)
else:
diffs.append(1)
return score, diffs


47 changes: 47 additions & 0 deletions services/prediction/transform.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder
import numpy as np
import pandas as pd
def makeTrainingData(data, fields, features, target):
headers = []
featureFields = list(filter(lambda x: x['fid'] in features, fields))
targetField = list(filter(lambda x: x['fid'] == target, fields))[0]
X = np.zeros(shape=(len(data), 1))
y = np.zeros(shape=(len(data), 1))
target_encoder = OrdinalEncoder()
target_values = np.array([row[targetField['fid']] for row in data])
y = target_encoder.fit_transform(target_values.reshape(-1, 1))
for field in featureFields:
if field['semanticType'] == 'nominal':
values = np.array([row[field['fid']] for row in data])
values = values.reshape(-1, 1)
if field['features']['unique'] > 2:
encoder = OneHotEncoder()
res = encoder.fit_transform(values)
X = np.concatenate((X, res.toarray()), axis=1)
for v in encoder.categories_[0]:
headers.append(field['name'] + '_' + v)
continue
else:
encoder = OrdinalEncoder()
res = encoder.fit_transform(values)
X = np.concatenate((X, res), axis=1)
elif field['semanticType'] == 'ordinal':
values = np.array([row[field['fid']] for row in data])
values = values.reshape(-1, 1)
encoder = OrdinalEncoder()
res = encoder.fit_transform(values)
X = np.concatenate((X, res), axis=1)
elif field['semanticType'] == 'quantitative':
values = np.array([row[field['fid']] for row in data])
values = values.reshape(-1, 1)
X = np.concatenate((X, values), axis=1)
elif field['semanticType'] == 'temporal':
timestamps = []
for row in data:
ts = pd.Timestamp(row[field['fid']]).timestamp()
timestamps.append(ts)
values = np.array(timestamps)
values = values.reshape(-1, 1)
X = np.concatenate((X, values), axis=1)
headers.append(field['name'])
return X[:,1:], y, headers