Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add checked math to FixedDecimals; default to overflow behavior #85

Merged
merged 21 commits into from
Dec 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ jobs:
version:
- '1.6'
- '1'
# - 'nightly'
- 'nightly'
os:
- ubuntu-latest
- macOS-latest
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "FixedPointDecimals"
uuid = "fb4d412d-6eee-574d-9565-ede6634db7b0"
authors = ["Fengyang Wang <fengyang.wang.0@gmail.com>", "Curtis Vogt <curtis.vogt@gmail.com>"]
version = "0.4.4"
version = "0.5.0"

[deps]
Parsers = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
Expand Down
61 changes: 61 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,3 +44,64 @@ julia> 0.1 + 0.2
julia> FixedDecimal{Int,1}(0.1) + FixedDecimal{Int,1}(0.2)
FixedDecimal{Int64,1}(0.3)
```

### Arithmetic details: Overflow and checked math

_NOTE: This section applies to FixedPointDecimals v0.5+._

By default, all arithmetic operations on FixedDecimals, except division, **will silently overflow** following the standard behavior for bit integer types in Julia. For example:
```julia
julia> FixedDecimal{Int8,2}(1.0) + FixedDecimal{Int8,2}(1.0)
FixedDecimal{Int8,2}(-0.56)

julia> -FixedDecimal{Int8,2}(-1.28) # negative typemin wraps to typemin again
FixedDecimal{Int8,2}(-1.28)

julia> abs(FixedDecimal{Int8,2}(-1.28)) # negative typemin wraps to typemin again
FixedDecimal{Int8,2}(-1.28)
```

*Note that **division** on FixedDecimals will throw OverflowErrors on overflow, and will not wrap. This decision may be reevaluated in a future breaking version change release of FixedDecimals. Please keep this in mind.*

In most applications dealing with `FixedDecimals`, you will likely want to use the **checked arithmetic** operations instead. These operations will _throw an OverflowError_ on overflow or underflow, rather than silently wrapping. For example:
```julia
julia> Base.checked_mul(FixedDecimal{Int8,2}(1.2), FixedDecimal{Int8,2}(1.2))
ERROR: OverflowError: 1.20 * 1.20 overflowed for type FixedDecimal{Int8, 2}

julia> Base.checked_add(FixedDecimal{Int8,2}(1.2), 1)
ERROR: OverflowError: 1.20 + 1.00 overflowed for type FixedDecimal{Int8, 2}

julia> Base.checked_div(Int8(1), FixedDecimal{Int8,2}(0.5))
ERROR: OverflowError: 1.00 ÷ 0.50 overflowed for type FixedDecimal{Int8, 2}
```

**Checked division:** Note that `checked_div` performs truncating, integer division. Julia Base does not provide a function to perform checked *decimal* division (`/`), so we provide one in this package, `FixedPointDecimals.checked_rdiv`. However, as noted above, the default division arithmetic operators will throw on overflow anyway.

Here are all the checked arithmetic operations supported by `FixedDecimal`s:
- `Base.checked_add(x,y)`
- `Base.checked_sub(x,y)`
- `Base.checked_mul(x,y)`
- `Base.checked_div(x,y)`
- `FixedPointDecimals.checked_rdiv(x,y)`
- `Base.checked_cld(x,y)`
- `Base.checked_fld(x,y)`
- `Base.checked_rem(x,y)`
- `Base.checked_mod(x,y)`
- `Base.checked_neg(x)`
- `Base.checked_abs(x)`

### Conversions, Promotions, and Inexact Errors.

Note that arithmetic operations will _promote_ all arguments to the same FixedDecimal type
before performing the operation. If you are promoting a non-FixedDecimal _number_ to a FixedDecimal, there is always a chance that the Number will not fit in the FD type. In that case, the conversion will throw an exception. Here are some examples:
```julia
julia> FixedDecimal{Int8,2}(2) # 200 doesn't fit in Int8
ERROR: InexactError: convert(FixedDecimal{Int8, 2}, 2)

julia> FixedDecimal{Int8,2}(1) + 2 # Same here: 2 is promoted to FD{Int8,2}(2)
ERROR: InexactError: convert(FixedDecimal{Int8, 2}, 2)

julia> FixedDecimal{Int8,2}(1) + FixedDecimal{Int8,1}(2) # Promote to the higher-precision type again throws.
ERROR: InexactError: convert(FixedDecimal{Int8, 2}, 2.0)
```

180 changes: 154 additions & 26 deletions src/FixedPointDecimals.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,13 @@ module FixedPointDecimals

export FixedDecimal, RoundThrows

# (Re)export checked_* arithmetic functions
# - Defined in this package:
export checked_rdiv
# - Reexported from Base:
export checked_abs, checked_add, checked_cld, checked_div, checked_fld,
checked_mod, checked_mul, checked_neg, checked_rem, checked_sub

using Base: decompose, BitInteger
import Parsers

Expand Down Expand Up @@ -187,28 +194,12 @@ end

# these functions are needed to avoid InexactError when converting from the
# integer type
Base.:*(x::Integer, y::FD{T, f}) where {T, f} = reinterpret(FD{T, f}, T(x * y.i))
Base.:*(x::FD{T, f}, y::Integer) where {T, f} = reinterpret(FD{T, f}, T(x.i * y))
Base.:*(x::Integer, y::FD{T, f}) where {T, f} = reinterpret(FD{T, f}, x * y.i)
Base.:*(x::FD{T, f}, y::Integer) where {T, f} = reinterpret(FD{T, f}, x.i * y)

function Base.:/(x::FD{T, f}, y::FD{T, f}) where {T, f}
powt = coefficient(FD{T, f})
quotient, remainder = fldmod(widemul(x.i, powt), y.i)
reinterpret(FD{T, f}, T(_round_to_nearest(quotient, remainder, y.i)))
end

# These functions allow us to perform division with integers outside of the range of the
# FixedDecimal.
function Base.:/(x::Integer, y::FD{T, f}) where {T, f}
powt = coefficient(FD{T, f})
powtsq = widemul(powt, powt)
quotient, remainder = fldmod(widemul(x, powtsq), y.i)
reinterpret(FD{T, f}, T(_round_to_nearest(quotient, remainder, y.i)))
end

function Base.:/(x::FD{T, f}, y::Integer) where {T, f}
quotient, remainder = fldmod(x.i, y)
reinterpret(FD{T, f}, T(_round_to_nearest(quotient, remainder, y)))
end
Base.:/(x::FD, y::FD) = checked_rdiv(x, y)
Base.:/(x::Integer, y::FD) = checked_rdiv(x, y)
Base.:/(x::FD, y::Integer) = checked_rdiv(x, y)

# integerification
Base.trunc(x::FD{T, f}) where {T, f} = FD{T, f}(div(x.i, coefficient(FD{T, f})))
Expand Down Expand Up @@ -359,17 +350,154 @@ for remfn in [:rem, :mod, :mod1, :min, :max]
end
# TODO: When we upgrade to a min julia version >=1.4 (i.e Julia 2.0), this block can be
# dropped in favor of three-argument `div`, below.
for divfn in [:div, :fld, :fld1, :cld]
# div(x.i, y.i) eliminates the scaling coefficient, so we call the FD constructor.
# We don't need any widening logic, since we won't be multiplying by the coefficient.
@eval Base.$divfn(x::T, y::T) where {T <: FD} = T($divfn(x.i, y.i))
# The division functions all default to *throwing OverflowError* rather than
# wrapping on integer overflow.
# This decision may be changed in a future release of FixedPointDecimals.
Base.div(x::FD, y::FD) = Base.checked_div(x, y)
Base.fld(x::FD, y::FD) = Base.checked_fld(x, y)
Base.cld(x::FD, y::FD) = Base.checked_cld(x, y)
# There is no checked_fld1, so this is implemented here:
function Base.fld1(x::FD{T,f}, y::FD{T,f}) where {T, f}
C = coefficient(FD{T, f})
# Note: fld1() will already throw for divide-by-zero and typemin(T) ÷ -1.
v, b = Base.Checked.mul_with_overflow(C, fld1(x.i, y.i))
b && _throw_overflowerr_op(:fld1, x, y)
return reinterpret(FD{T, f}, v)
end
if VERSION >= v"1.4.0-"
# div(x.i, y.i) eliminates the scaling coefficient, so we call the FD constructor.
# We don't need any widening logic, since we won't be multiplying by the coefficient.
Base.div(x::T, y::T, r::RoundingMode) where {T <: FD} = T(div(x.i, y.i, r))
@eval function Base.div(x::FD{T, f}, y::FD{T, f}, r::RoundingMode) where {T<:Integer, f}
C = coefficient(FD{T, f})
# Note: The div() will already throw for divide-by-zero and typemin(T) ÷ -1.
v, b = Base.Checked.mul_with_overflow(C, div(x.i, y.i, r))
b && _throw_overflowerr_op(:div, x, y)
return reinterpret(FD{T, f}, v)
end
end

# --- Checked arithmetic ---

Base.checked_add(x::FD, y::FD) = Base.checked_add(promote(x, y)...)
Base.checked_sub(x::FD, y::FD) = Base.checked_sub(promote(x, y)...)
Base.checked_mul(x::FD, y::FD) = Base.checked_mul(promote(x, y)...)
Base.checked_div(x::FD, y::FD) = Base.checked_div(promote(x, y)...)
Base.checked_cld(x::FD, y::FD) = Base.checked_cld(promote(x, y)...)
Base.checked_fld(x::FD, y::FD) = Base.checked_fld(promote(x, y)...)
Base.checked_rem(x::FD, y::FD) = Base.checked_rem(promote(x, y)...)
Base.checked_mod(x::FD, y::FD) = Base.checked_mod(promote(x, y)...)

Base.checked_add(x::FD, y) = Base.checked_add(promote(x, y)...)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Also here would be good to audit if promote is a good idea when one of the inputs is a BigInt

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Currently, I think that this package just relies on promotion to do arithmetic on BigInts, which I agree is causing unnecessary allocs:

julia> @which FD{BigInt,2}(2) + 2
+(x::Number, y::Number)
     @ Base promotion.jl:410

julia> @code_typed FD{BigInt,2}(2) + 2
CodeInfo(
1%1 = invoke Base.GMP.MPZ.set_si(10::Int64)::BigInt%2 = invoke Base.GMP.bigint_pow(%1::BigInt, 2::Int64)::BigInt%3 = invoke Base.GMP.MPZ.mul_si(%2::BigInt, y::Int64)::BigInt%4 = Base.getfield(x, :i)::BigInt%5 = invoke Base.GMP.MPZ.add(%4::BigInt, %3::BigInt)::BigInt%6 = %new(FixedDecimal{BigInt, 2}, %5)::FixedDecimal{BigInt, 2}
└──      return %6
) => FixedDecimal{BigInt, 2}

julia> @code_typed optimize=false FD{BigInt,2}(2) + 2
CodeInfo(
1%1 = Base.:+::Core.Const(+)
│   %2 = Base.promote(x, y)::Tuple{FixedDecimal{BigInt, 2}, FixedDecimal{BigInt, 2}}%3 = Core._apply_iterate(Base.iterate, %1, %2)::FixedDecimal{BigInt, 2}
└──      return %3
) => FixedDecimal{BigInt, 2}

I'm just going to file this as a future improvement and move on, since I feel bad about how long this PR has lagged for.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Filed: #87.

Base.checked_add(x, y::FD) = Base.checked_add(promote(x, y)...)
Base.checked_sub(x::FD, y) = Base.checked_sub(promote(x, y)...)
Base.checked_sub(x, y::FD) = Base.checked_sub(promote(x, y)...)
Base.checked_mul(x::FD, y) = Base.checked_mul(promote(x, y)...)
Base.checked_mul(x, y::FD) = Base.checked_mul(promote(x, y)...)
Base.checked_div(x::FD, y) = Base.checked_div(promote(x, y)...)
Base.checked_div(x, y::FD) = Base.checked_div(promote(x, y)...)
Base.checked_cld(x::FD, y) = Base.checked_cld(promote(x, y)...)
Base.checked_cld(x, y::FD) = Base.checked_cld(promote(x, y)...)
Base.checked_fld(x::FD, y) = Base.checked_fld(promote(x, y)...)
Base.checked_fld(x, y::FD) = Base.checked_fld(promote(x, y)...)
Base.checked_rem(x::FD, y) = Base.checked_rem(promote(x, y)...)
Base.checked_rem(x, y::FD) = Base.checked_rem(promote(x, y)...)
Base.checked_mod(x::FD, y) = Base.checked_mod(promote(x, y)...)
Base.checked_mod(x, y::FD) = Base.checked_mod(promote(x, y)...)

function Base.checked_add(x::T, y::T) where {T<:FD}
z, b = Base.add_with_overflow(x.i, y.i)
b && Base.Checked.throw_overflowerr_binaryop(:+, x, y)
return reinterpret(T, z)
end
NHDaly marked this conversation as resolved.
Show resolved Hide resolved
function Base.checked_sub(x::T, y::T) where {T<:FD}
z, b = Base.sub_with_overflow(x.i, y.i)
b && Base.Checked.throw_overflowerr_binaryop(:-, x, y)
return reinterpret(T, z)
end
function Base.checked_mul(x::FD{T,f}, y::FD{T,f}) where {T<:Integer,f}
powt = coefficient(FD{T, f})
quotient, remainder = fldmodinline(widemul(x.i, y.i), powt)
v = _round_to_nearest(quotient, remainder, powt)
typemin(T) <= v <= typemax(T) || Base.Checked.throw_overflowerr_binaryop(:*, x, y)
return reinterpret(FD{T, f}, T(v))
end
# Checked division functions
for divfn in [:div, :fld, :cld]
@eval function Base.$(Symbol("checked_$divfn"))(x::FD{T,f}, y::FD{T,f}) where {T<:Integer,f}
C = coefficient(FD{T, f})
# Note: The div() will already throw for divide-by-zero and typemin(T) ÷ -1.
v, b = Base.Checked.mul_with_overflow(C, $divfn(x.i, y.i))
b && _throw_overflowerr_op($(QuoteNode(divfn)), x, y)
return reinterpret(FD{T, f}, v)
end
end
for remfn in [:rem, :mod]
# rem and mod already check for divide-by-zero and typemin(T) ÷ -1, so nothing to do.
@eval Base.$(Symbol("checked_$remfn"))(x::T, y::T) where {T <: FD} = $remfn(x, y)
end

@noinline _throw_overflowerr_op(op, x::T, y::T) where T = throw(OverflowError("$op($x, $y) overflowed for type $T"))

function Base.checked_neg(x::T) where {T<:FD}
r = -x
(x<0) & (r<0) && Base.Checked.throw_overflowerr_negation(x)
return r
end
function Base.checked_abs(x::FD)
r = ifelse(x<0, -x, x)
r<0 || return r
_throw_overflow_abs(x)
end
if VERSION >= v"1.8.0-"
@noinline _throw_overflow_abs(x) =
throw(OverflowError(LazyString("checked arithmetic: cannot compute |x| for x = ", x, "::", typeof(x))))
else
@noinline _throw_overflow_abs(x) =
throw(OverflowError("checked arithmetic: cannot compute |x| for x = $x"))
end

# We introduce a new function for this since Base.Checked only supports integers, and ints
# don't have a decimal division operation.
"""
FixedPointDecimals.checked_rdiv(x::FD, y::FD) -> FD

Calculates `x / y`, checking for overflow errors where applicable.

The overflow protection may impose a perceptible performance penalty.

See also:
- `Base.checked_div` for truncating division.
"""
checked_rdiv(x::FD, y::FD) = checked_rdiv(promote(x, y)...)

function checked_rdiv(x::FD{T,f}, y::FD{T,f}) where {T<:Integer,f}
powt = coefficient(FD{T, f})
quotient, remainder = fldmod(widemul(x.i, powt), y.i)
v = _round_to_nearest(quotient, remainder, y.i)
typemin(T) <= v <= typemax(T) || Base.Checked.throw_overflowerr_binaryop(:/, x, y)
return reinterpret(FD{T, f}, v)
end
NHDaly marked this conversation as resolved.
Show resolved Hide resolved

# These functions allow us to perform division with integers outside of the range of the
# FixedDecimal.
function checked_rdiv(x::Integer, y::FD{T, f}) where {T<:Integer, f}
powt = coefficient(FD{T, f})
powtsq = widemul(powt, powt)
quotient, remainder = fldmod(widemul(x, powtsq), y.i)
v = _round_to_nearest(quotient, remainder, y.i)
typemin(T) <= v <= typemax(T) || Base.Checked.throw_overflowerr_binaryop(:/, x, y)
reinterpret(FD{T, f}, v)
end
function checked_rdiv(x::FD{T, f}, y::Integer) where {T<:Integer, f}
quotient, remainder = fldmod(x.i, y)
v = _round_to_nearest(quotient, remainder, y)
typemin(T) <= v <= typemax(T) || Base.Checked.throw_overflowerr_binaryop(:/, x, y)
reinterpret(FD{T, f}, v)
end


# --------------------------

Base.convert(::Type{AbstractFloat}, x::FD) = convert(floattype(typeof(x)), x)
function Base.convert(::Type{TF}, x::FD{T, f}) where {TF <: AbstractFloat, T, f}
convert(TF, x.i / coefficient(FD{T, f}))::TF
Expand Down
Loading
Loading