Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

pared down mod2pi pull request #4862

Merged
merged 13 commits into from
Dec 16, 2013
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions base/exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -382,6 +382,7 @@ export
mod,
mod1,
modf,
mod2pi,
nan,
nextfloat,
nextpow,
Expand Down
98 changes: 92 additions & 6 deletions base/math.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ export sin, cos, tan, sinh, cosh, tanh, asin, acos, atan,
cbrt, sqrt, erf, erfc, erfcx, erfi, dawson,
ceil, floor, trunc, round, significand,
lgamma, hypot, gamma, lfact, max, min, ldexp, frexp,
clamp, modf, ^,
clamp, modf, ^, mod2pi,
airy, airyai, airyprime, airyaiprime, airybi, airybiprime,
besselj0, besselj1, besselj, bessely0, bessely1, bessely,
hankelh1, hankelh2, besseli, besselk, besselh,
Expand Down Expand Up @@ -644,9 +644,9 @@ hankelh2(nu, z) = besselh(nu, 2, z)


function angle_restrict_symm(theta)
P1 = 4 * 7.8539812564849853515625e-01
P2 = 4 * 3.7748947079307981766760e-08
P3 = 4 * 2.6951514290790594840552e-15
const P1 = 4 * 7.8539812564849853515625e-01
const P2 = 4 * 3.7748947079307981766760e-08
const P3 = 4 * 2.6951514290790594840552e-15

y = 2*floor(theta/(2*pi))
r = ((theta - y*P1) - y*P2) - y*P3
Expand All @@ -664,7 +664,7 @@ const clg_coeff = [76.18009172947146,
-0.5395239384953e-5]

function clgamma_lanczos(z)
sqrt2pi = 2.5066282746310005
const sqrt2pi = 2.5066282746310005

y = x = z
temp = x + 5.5
Expand All @@ -685,7 +685,7 @@ function lgamma(z::Complex)
if real(z) <= 0.5
a = clgamma_lanczos(1-z)
b = log(sinpi(z))
logpi = 1.14472988584940017
const logpi = 1.14472988584940017
z = logpi - b - a
else
z = clgamma_lanczos(z)
Expand Down Expand Up @@ -1337,4 +1337,90 @@ end
erfcinv(x::Integer) = erfcinv(float(x))
@vectorize_1arg Real erfcinv

## mod2pi-related calculations ##

function add22condh(xh::Float64, xl::Float64, yh::Float64, yl::Float64)
# as above, but only compute and return high double
r = xh+yh
s = (abs(xh) > abs(yh)) ? (xh-r+yh+yl+xl) : (yh-r+xh+xl+yl)
zh = r+s
return zh
end

function ieee754_rem_pio2(x::Float64)
# rem_pio2 essentially computes x mod pi/2 (ie within a quarter circle)
# and returns the result as
# y between + and - pi/4 (for maximal accuracy (as the sign bit is exploited)), and
# n, where n specifies the integer part of the division, or, at any rate,
# in which quadrant we are.
# The invariant fulfilled by the returned values seems to be
# x = y + n*pi/2 (where y = y1+y2 is a double-double and y2 is the "tail" of y).
# Note: for very large x (thus n), the invariant might hold only modulo 2pi
# (in other words, n might be off by a multiple of 4, or a multiple of 100)

# this is just wrapping up
# https://github.com/JuliaLang/openlibm/blob/master/src/e_rem_pio2.c

y = [0.0,0.0]
n = ccall((:__ieee754_rem_pio2, libm), Cint, (Float64,Ptr{Float64}), x, y)
return (n,y)
end

# multiples of pi/2, as double-double (ie with "tail")
const pi1o2_h = 1.5707963267948966 # convert(Float64, pi * BigFloat(1/2))
const pi1o2_l = 6.123233995736766e-17 # convert(Float64, pi * BigFloat(1/2) - pi1o2_h)

const pi2o2_h = 3.141592653589793 # convert(Float64, pi * BigFloat(1))
const pi2o2_l = 1.2246467991473532e-16 # convert(Float64, pi * BigFloat(1) - pi2o2_h)

const pi3o2_h = 4.71238898038469 # convert(Float64, pi * BigFloat(3/2))
const pi3o2_l = 1.8369701987210297e-16 # convert(Float64, pi * BigFloat(3/2) - pi3o2_h)

const pi4o2_h = 6.283185307179586 # convert(Float64, pi * BigFloat(2))
const pi4o2_l = 2.4492935982947064e-16 # convert(Float64, pi * BigFloat(2) - pi4o2_h)

function mod2pi(x::Float64) # or modtau(x)
# with r = mod2pi(x)
# a) 0 <= r < 2π (note: boundary open or closed - a bit fuzzy, due to rem_pio2 implementation)
# b) r-x = k*2π with k integer

# note: mod(n,4) is 0,1,2,3; while mod(n-1,4)+1 is 1,2,3,4.
# We use the latter to push negative y in quadrant 0 into the positive (one revolution, + 4*pi/2)

if x < pi4o2_h
if 0.0 <= x return x end
if x > -pi4o2_h
return add22condh(x,0.0,pi4o2_h,pi4o2_l)
end
end

(n,y) = ieee754_rem_pio2(x)

if iseven(n)
if n & 2 == 2 # add pi
return add22condh(y[1],y[2],pi2o2_h,pi2o2_l)
else # add 0 or 2pi
if y[1] > 0.0
return y[1]
else # else add 2pi
return add22condh(y[1],y[2],pi4o2_h,pi4o2_l)
end
end
else # add pi/2 or 3pi/2
if n & 2 == 2 # add 3pi/2
return add22condh(y[1],y[2],pi3o2_h,pi3o2_l)
else # add pi/2
return add22condh(y[1],y[2],pi1o2_h,pi1o2_l)
end
end
end

mod2pi(x::Float32) = float32(mod2pi(float64(x)))
mod2pi(x::Int32) = mod2pi(float64(x))
function mod2pi(x::Int64)
fx = float64(x)
fx == x || error("Integer argument to mod2pi is too large: $x")
mod2pi(fx)
end

end # module
3 changes: 3 additions & 0 deletions doc/manual/mathematical-operations.rst
Original file line number Diff line number Diff line change
Expand Up @@ -314,6 +314,9 @@ Function Description
``fld(x,y)`` floored division; quotient rounded towards ``-Inf``
``rem(x,y)`` remainder; satisfies ``x == div(x,y)*y + rem(x,y)``; sign matches ``x``
``mod(x,y)`` modulus; satisfies ``x == fld(x,y)*y + mod(x,y)``; sign matches ``y``
``mod2pi(x)`` modulus with respect to 2pi; ``0 <= mod2pi(x) < 2pi``
``modpi(x)`` modulus with respect to pi; ``0 <= modpi(x) < pi``
``modpio2(x)`` modulus with respect to pi/2; ``0 <= modpio2(x) < pi/2``
``gcd(x,y...)`` greatest common divisor of ``x``, ``y``,...; sign matches ``x``
``lcm(x,y...)`` least common multiple of ``x``, ``y``,...; sign matches ``x``
=============== =======================================================================
Expand Down
14 changes: 13 additions & 1 deletion doc/stdlib/base.rst
Original file line number Diff line number Diff line change
Expand Up @@ -1972,6 +1972,18 @@ Mathematical Operators

Modulus after division, returning in the range [0,m)

.. function:: modpi(x)

Modulus after division by pi, returning in the range [0,pi). More accurate than mod(x,pi).

.. function:: mod2pi(x)

Modulus after division by 2pi, returning in the range [0,2pi). More accurate than mod(x,2pi).

.. function:: modpio2(x)

Modulus after division by pi/2, returning in the range [0,pi/2). More accurate than mod(x,pi/2).

.. function:: rem(x, m)

Remainder after division
Expand Down Expand Up @@ -2468,7 +2480,7 @@ Mathematical Functions

.. function:: round(x, [digits, [base]])

``round(x)`` returns the nearest integral value of the same type as ``x`` to ``x``. ``round(x, digits)`` rounds to the specified number of digits after the decimal place, or before if negative, e.g., ``round(pi,2)`` is ``3.14``. ``round(x, digits, base)`` rounds using a different base, defaulting to 10, e.g., ``round(pi, 3, 2)`` is ``3.125``.
``round(x)`` returns the nearest integral value of the same type as ``x`` to ``x``. ``round(x, digits)`` rounds to the specified number of digits after the decimal place, or before if negative, e.g., ``round(pi,2)`` is ``3.14``. ``round(x, digits, base)`` rounds using a different base, defaulting to 10, e.g., ``round(pi, 1, 8)`` is ``3.125``.

.. function:: ceil(x, [digits, [base]])

Expand Down
2 changes: 1 addition & 1 deletion test/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ TESTS = all core keywordargs numbers strings unicode collections hashing \
math functional bigint sorting statistics spawn parallel arpack file \
git pkg resolve suitesparse complex version pollfd mpfr broadcast \
socket floatapprox priorityqueue readdlm regex float16 combinatorics \
sysinfo rounding ranges
sysinfo rounding ranges mod2pi

default: all

Expand Down
195 changes: 195 additions & 0 deletions test/mod2pi.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,195 @@
# NOTES on range reduction
# [1] compute numbers near pi: http://www.cs.berkeley.edu/~wkahan/testpi/nearpi.c
# [2] range reduction: http://hal-ujm.ccsd.cnrs.fr/docs/00/08/69/04/PDF/RangeReductionIEEETC0305.pdf
# [3] precise addition, see Add22: http://ftp.nluug.nl/pub/os/BSD/FreeBSD/distfiles/crlibm/crlibm-1.0beta3.pdf

# Examples:
# ΓΓ = 6411027962775774 / 2^47 # see [2] above, section 1.2
# julia> mod(ΓΓ, pi/2) # "naive" way - easily wrong
# 1.7763568394002505e-15
# julia> modpio2( ΓΓ ) # using function provided here
# 6.189806365883577e-19
# Wolfram Alpha: mod(6411027962775774 / 2^47, pi/2)
# 6.189806365883577000150671465609655958633034115366621088... × 10^-19


# Test Cases. Each row contains: x and x mod 2pi (as from Wolfram Alpha)
# The values x are:
# -pi/2, pi/2, -pi, pi, 2pi, -2pi
# (or rather, the Float64 approx to those numbers.
# Thus, x mod pi will result in a small, but positive number)
# ΓΓ = 6411027962775774 / 2^47
# from [2], section 1.2:
# the Float64 greater than 8, and less than 2**63 − 1 closest to a multiple of π/4 is
# Γ = 6411027962775774 / 2^48. We take ΓΓ = 2*Γ to get cancellation with pi/2 already
# 3.14159265359, -3.14159265359
# pi/16*k +/- 0.00001 for k in [-20:20] # to cover all quadrants
# numerators of continuous fraction approximations to pi
# see http://oeis.org/A002485
# (reason: for max cancellation, we want x = k*pi + eps for small eps, so x/k ≈ pi)

testCases = [
-1.5707963267948966 4.71238898038469
1.5707963267948966 1.5707963267948966
-3.141592653589793 3.1415926535897936
3.141592653589793 3.141592653589793
6.283185307179586 6.283185307179586
-6.283185307179586 2.4492935982947064e-16
45.553093477052 1.5707963267948966
3.14159265359 3.14159265359
-3.14159265359 3.1415926535895866
-3.9269808169872418 2.356204490192345
-3.73063127613788 2.5525540310417068
-3.5342817352885176 2.748903571891069
-3.337932194439156 2.945253112740431
-3.1415826535897935 3.141602653589793
-2.9452331127404316 3.337952194439155
-2.7488835718910694 3.5343017352885173
-2.5525340310417075 3.730651276137879
-2.356184490192345 3.9270008169872415
-2.1598349493429834 4.123350357836603
-1.9634854084936209 4.319699898685966
-1.7671358676442588 4.516049439535328
-1.5707863267948967 4.71239898038469
-1.3744367859455346 4.908748521234052
-1.1780872450961726 5.105098062083414
-0.9817377042468104 5.301447602932776
-0.7853881633974483 5.4977971437821385
-0.5890386225480863 5.6941466846315
-0.3926890816987242 5.890496225480862
-0.1963395408493621 6.0868457663302244
1.0e-5 1.0e-5
0.19635954084936205 0.19635954084936205
0.3927090816987241 0.3927090816987241
0.5890586225480862 0.5890586225480862
0.7854081633974482 0.7854081633974482
0.9817577042468103 0.9817577042468103
1.1781072450961723 1.1781072450961723
1.3744567859455343 1.3744567859455343
1.5708063267948964 1.5708063267948964
1.7671558676442585 1.7671558676442585
1.9635054084936205 1.9635054084936205
2.159854949342982 2.159854949342982
2.3562044901923445 2.3562044901923445
2.5525540310417063 2.5525540310417063
2.7489035718910686 2.7489035718910686
2.9452531127404304 2.9452531127404304
3.1416026535897927 3.1416026535897927
3.3379521944391546 3.3379521944391546
3.534301735288517 3.534301735288517
3.7306512761378787 3.7306512761378787
3.927000816987241 3.927000816987241
-3.9270008169872415 2.356184490192345
-3.7306512761378796 2.552534031041707
-3.5343017352885173 2.7488835718910694
-3.3379521944391555 2.945233112740431
-3.141602653589793 3.1415826535897935
-2.9452531127404313 3.3379321944391553
-2.748903571891069 3.5342817352885176
-2.552554031041707 3.7306312761378795
-2.356204490192345 3.9269808169872418
-2.159854949342983 4.123330357836603
-1.9635054084936208 4.3196798986859655
-1.7671558676442587 4.516029439535328
-1.5708063267948966 4.71237898038469
-1.3744567859455346 4.908728521234052
-1.1781072450961725 5.105078062083414
-0.9817577042468104 5.301427602932776
-0.7854081633974483 5.497777143782138
-0.5890586225480863 5.694126684631501
-0.39270908169872415 5.890476225480862
-0.19635954084936208 6.086825766330224
-1.0e-5 6.283175307179587
0.19633954084936206 0.19633954084936206
0.39268908169872413 0.39268908169872413
0.5890386225480861 0.5890386225480861
0.7853881633974482 0.7853881633974482
0.9817377042468103 0.9817377042468103
1.1780872450961724 1.1780872450961724
1.3744367859455344 1.3744367859455344
1.5707863267948965 1.5707863267948965
1.7671358676442586 1.7671358676442586
1.9634854084936206 1.9634854084936206
2.1598349493429825 2.1598349493429825
2.3561844901923448 2.3561844901923448
2.5525340310417066 2.5525340310417066
2.748883571891069 2.748883571891069
2.9452331127404308 2.9452331127404308
3.141582653589793 3.141582653589793
3.337932194439155 3.337932194439155
3.534281735288517 3.534281735288517
3.730631276137879 3.730631276137879
3.9269808169872413 3.9269808169872413
22.0 3.1504440784612404
333.0 6.2743640266615035
355.0 3.1416227979431572
103993.0 6.283166177843807
104348.0 3.141603668607378
208341.0 3.141584539271598
312689.0 2.9006993893361787e-6
833719.0 3.1415903406703767
1.146408e6 3.1415932413697663
4.272943e6 6.283184757600089
5.419351e6 3.1415926917902683
8.0143857e7 6.283185292406739
1.65707065e8 3.1415926622445745
2.45850922e8 3.141592647471728
4.11557987e8 2.5367160519636766e-9
1.068966896e9 3.14159265254516
2.549491779e9 4.474494938161497e-10
6.167950454e9 3.141592653440059
1.4885392687e10 1.4798091093322177e-10
2.1053343141e10 3.14159265358804
1.783366216531e12 6.969482408757582e-13
3.587785776203e12 3.141592653589434
5.371151992734e12 3.1415926535901306
8.958937768937e12 6.283185307179564
1.39755218526789e14 3.1415926535898
4.28224593349304e14 3.1415926535897927
5.706674932067741e15 4.237546464512562e-16
6.134899525417045e15 3.141592653589793
]

function testModPi()
numTestCases = size(testCases,1)
modFns = [mod2pi]
xDivisors = [2pi]
errsNew, errsOld = Array(Float64,0), Array(Float64,0)
for rowIdx in 1:numTestCases
xExact = testCases[rowIdx,1]
for colIdx in 1:1
xSoln = testCases[rowIdx,colIdx+1]
xDivisor = xDivisors[colIdx]
modFn = modFns[colIdx]
# 2. want: xNew := modFn(xExact) ≈ xSoln <--- this is the crucial bit, xNew close to xSoln
# 3. know: xOld := mod(xExact,xDivisor) might be quite a bit off from xSoln - that's expected
xNew = modFn(xExact)
xOld = mod(xExact,xDivisor)

newDiff = abs(xNew - xSoln) # should be zero, ideally (our new function)
oldDiff = abs(xOld - xSoln) # should be zero in a perfect world, but often bigger due to cancellation
oldDiff = min(oldDiff, abs(xDivisor - oldDiff)) # we are being generous here:
# if xOld happens to end up "on the wrong side of 0", eg
# if xSoln = 3.14 (correct), but xOld reports 0.01,
# we don't take the long way around the circle of 3.14 - 0.01, but the short way of 3.1415.. - (3.14 - 0.1)
push!(errsNew,abs(newDiff))
push!(errsOld,abs(oldDiff))
end
end
sort!(errsNew)
sort!(errsOld)
totalErrNew = sum(errsNew)
totalErrOld = sum(errsOld)
@test_approx_eq totalErrNew 0.0
end
testModPi()

# 2pi
@test_approx_eq mod2pi(10) mod(10,2pi)
@test_approx_eq mod2pi(-10) mod(-10,2pi)
@test_approx_eq mod2pi(355) 3.1416227979431572
@test_approx_eq mod2pi(int32(355)) 3.1416227979431572
@test_approx_eq mod2pi(355.0) 3.1416227979431572
@test_approx_eq mod2pi(355.0f0) 3.1416228f0
@test mod2pi(2^60) == mod2pi(2.0^60)
@test_throws mod2pi(2^60-1)
2 changes: 1 addition & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ testnames = ["core", "keywordargs", "numbers", "strings", "unicode",
"arpack", "file", "suitesparse", "version",
"resolve", "pollfd", "mpfr", "broadcast", "complex",
"socket", "floatapprox", "readdlm", "regex", "float16",
"combinatorics", "sysinfo", "rounding", "ranges"]
"combinatorics", "sysinfo", "rounding", "ranges", "mod2pi"]

tests = ARGS==["all"] ? testnames : ARGS

Expand Down