Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename: getcolptr -> colptrs #33041

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions stdlib/SparseArrays/src/higherorderfns.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ import Base: map, map!, broadcast, copy, copyto!
using Base: front, tail, to_shape
using ..SparseArrays: SparseVector, SparseMatrixCSC, AbstractSparseVector,
AbstractSparseMatrix, AbstractSparseArray, indtype, nnz, nzrange,
SparseVectorUnion, AdjOrTransSparseVectorUnion, nonzeroinds, nonzeros, rowvals, getcolptr
SparseVectorUnion, AdjOrTransSparseVectorUnion, nonzeroinds, nonzeros, rowvals, colptrs
using Base.Broadcast: BroadcastStyle, Broadcasted, flatten
using LinearAlgebra

Expand Down Expand Up @@ -119,13 +119,13 @@ const SpBroadcasted2{Style<:SPVM,Axes,F,Args<:Tuple{SparseVecOrMat,SparseVecOrMa
@inline colrange(A::SparseMatrixCSC, j) = nzrange(A, j)
@inline colstartind(A::SparseVector, j) = one(indtype(A))
@inline colboundind(A::SparseVector, j) = convert(indtype(A), length(nonzeroinds(A)) + 1)
@inline colstartind(A::SparseMatrixCSC, j) = getcolptr(A)[j]
@inline colboundind(A::SparseMatrixCSC, j) = getcolptr(A)[j + 1]
@inline colstartind(A::SparseMatrixCSC, j) = colptrs(A)[j]
@inline colboundind(A::SparseMatrixCSC, j) = colptrs(A)[j + 1]
@inline storedinds(A::SparseVector) = nonzeroinds(A)
@inline storedinds(A::SparseMatrixCSC) = rowvals(A)
@inline storedvals(A::SparseVecOrMat) = nonzeros(A)
@inline setcolptr!(A::SparseVector, j, val) = val
@inline setcolptr!(A::SparseMatrixCSC, j, val) = getcolptr(A)[j] = val
@inline setcolptr!(A::SparseMatrixCSC, j, val) = colptrs(A)[j] = val
function trimstorage!(A::SparseVecOrMat, maxstored)
resize!(storedinds(A), maxstored)
resize!(storedvals(A), maxstored)
Expand Down Expand Up @@ -286,7 +286,7 @@ end
function _densestructure!(A::SparseMatrixCSC)
nnzA = size(A, 1) * size(A, 2)
expandstorage!(A, nnzA)
copyto!(getcolptr(A), 1:size(A, 1):(nnzA + 1))
copyto!(colptrs(A), 1:size(A, 1):(nnzA + 1))
for k in _densecoloffsets(A)
copyto!(rowvals(A), k + 1, 1:size(A, 1))
end
Expand Down Expand Up @@ -812,7 +812,7 @@ function _broadcast_notzeropres!(f::Tf, fillvalue, C::SparseVecOrMat, A::SparseV
return C
end
_finishempty!(C::SparseVector) = C
_finishempty!(C::SparseMatrixCSC) = (fill!(getcolptr(C), 1); C)
_finishempty!(C::SparseMatrixCSC) = (fill!(colptrs(C), 1); C)

# special case - vector outer product
_copy(f::typeof(*), x::SparseVectorUnion, y::AdjOrTransSparseVectorUnion) = _outer(x, y)
Expand Down
78 changes: 39 additions & 39 deletions stdlib/SparseArrays/src/linalg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ function mul!(C::StridedVecOrMat, A::SparseMatrixCSC, B::Union{StridedVector,Adj
for k = 1:size(C, 2)
@inbounds for col = 1:size(A, 2)
αxj = B[col,k] * α
for j = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
for j = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
C[rv[j], k] += nzv[j]*αxj
end
end
Expand All @@ -68,7 +68,7 @@ function mul!(C::StridedVecOrMat, adjA::Adjoint{<:Any,<:SparseMatrixCSC}, B::Uni
for k = 1:size(C, 2)
@inbounds for col = 1:size(A, 2)
tmp = zero(eltype(C))
for j = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
for j = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
tmp += adjoint(nzv[j])*B[rv[j],k]
end
C[col,k] += tmp * α
Expand All @@ -94,7 +94,7 @@ function mul!(C::StridedVecOrMat, transA::Transpose{<:Any,<:SparseMatrixCSC}, B:
for k = 1:size(C, 2)
@inbounds for col = 1:size(A, 2)
tmp = zero(eltype(C))
for j = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
for j = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
tmp += transpose(nzv[j])*B[rv[j],k]
end
C[col,k] += tmp * α
Expand Down Expand Up @@ -126,7 +126,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, A::SparseMatrixCSC
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
@inbounds for multivec_row=1:mX, col = 1:size(A, 2), k=getcolptr(A)[col]:(getcolptr(A)[col+1]-1)
@inbounds for multivec_row=1:mX, col = 1:size(A, 2), k=colptrs(A)[col]:(colptrs(A)[col+1]-1)
C[multivec_row, col] += α * X[multivec_row, rv[k]] * nzv[k] # perhaps suboptimal position of α?
end
C
Expand All @@ -145,7 +145,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, adjA::Adjoint{<:An
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
@inbounds for col = 1:size(A, 2), k=getcolptr(A)[col]:(getcolptr(A)[col+1]-1), multivec_col=1:mX
@inbounds for col = 1:size(A, 2), k=colptrs(A)[col]:(colptrs(A)[col+1]-1), multivec_col=1:mX
C[multivec_col, rv[k]] += α * X[multivec_col, col] * adjoint(nzv[k]) # perhaps suboptimal position of α?
end
C
Expand All @@ -164,7 +164,7 @@ function mul!(C::StridedVecOrMat, X::AdjOrTransStridedMatrix, transA::Transpose{
if β != 1
β != 0 ? rmul!(C, β) : fill!(C, zero(eltype(C)))
end
@inbounds for col = 1:size(A, 2), k=getcolptr(A)[col]:(getcolptr(A)[col+1]-1), multivec_col=1:mX
@inbounds for col = 1:size(A, 2), k=colptrs(A)[col]:(colptrs(A)[col+1]-1), multivec_col=1:mX
C[multivec_col, rv[k]] += α * X[multivec_col, col] * transpose(nzv[k]) # perhaps suboptimal position of α?
end
C
Expand Down Expand Up @@ -296,8 +296,8 @@ function dot(A::SparseMatrixCSC{T1,S1},B::SparseMatrixCSC{T2,S2}) where {T1,T2,S
size(B) == (m,n) || throw(DimensionMismatch("matrices must have the same dimensions"))
r = dot(zero(T1), zero(T2))
@inbounds for j = 1:n
ia = getcolptr(A)[j]; ia_nxt = getcolptr(A)[j+1]
ib = getcolptr(B)[j]; ib_nxt = getcolptr(B)[j+1]
ia = colptrs(A)[j]; ia_nxt = colptrs(A)[j+1]
ib = colptrs(B)[j]; ib_nxt = colptrs(B)[j+1]
if ia < ia_nxt && ib < ib_nxt
ra = rowvals(A)[ia]; rb = rowvals(B)[ib]
while true
Expand Down Expand Up @@ -376,7 +376,7 @@ function _lmul!(U::UpperTriangularPlain, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -417,7 +417,7 @@ function _lmul!(L::LowerTriangularPlain, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -459,7 +459,7 @@ function _lmul!(U::UpperTriangularWrapped, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)
Z = zero(eltype(A))

joff = 0
Expand Down Expand Up @@ -499,7 +499,7 @@ function _lmul!(L::LowerTriangularWrapped, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)
Z = zero(eltype(A))

joff = 0
Expand Down Expand Up @@ -549,7 +549,7 @@ function _ldiv!(L::LowerTriangularPlain, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -591,7 +591,7 @@ function _ldiv!(U::UpperTriangularPlain, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -634,7 +634,7 @@ function _ldiv!(L::LowerTriangularWrapped, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -680,7 +680,7 @@ function _ldiv!(U::UpperTriangularWrapped, B::StridedVecOrMat)
nrowB, ncolB = size(B, 1), size(B, 2)
aa = getnzval(A)
ja = getrowval(A)
ia = getcolptr(A)
ia = colptrs(A)

joff = 0
for k = 1:ncolB
Expand Down Expand Up @@ -817,7 +817,7 @@ function ldiv!(D::Diagonal{T}, A::SparseMatrixCSC{T}) where {T}
for i=1:length(b)
iszero(b[i]) && throw(SingularException(i))
end
@inbounds for col = 1:size(A, 2), p = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
@inbounds for col = 1:size(A, 2), p = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
nonz[p] = b[Arowval[p]] \ nonz[p]
end
A
Expand All @@ -837,7 +837,7 @@ function triu(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
colptr[col] = 1
end
for col = max(k+1,1) : n
for c1 = getcolptr(S)[col] : getcolptr(S)[col+1]-1
for c1 = colptrs(S)[col] : colptrs(S)[col+1]-1
rowvals(S)[c1] > col - k && break
nnz += 1
end
Expand All @@ -847,8 +847,8 @@ function triu(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
nzval = Vector{Tv}(undef, nnz)
A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
for col = max(k+1,1) : n
c1 = getcolptr(S)[col]
for c2 = getcolptr(A)[col] : getcolptr(A)[col+1]-1
c1 = colptrs(S)[col]
for c2 = colptrs(A)[col] : colptrs(A)[col+1]-1
rowvals(A)[c2] = rowvals(S)[c1]
nonzeros(A)[c2] = nonzeros(S)[c1]
c1 += 1
Expand All @@ -863,8 +863,8 @@ function tril(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
nnz = 0
colptr[1] = 1
for col = 1 : min(n, m+k)
l1 = getcolptr(S)[col+1]-1
for c1 = 0 : (l1 - getcolptr(S)[col])
l1 = colptrs(S)[col+1]-1
for c1 = 0 : (l1 - colptrs(S)[col])
rowvals(S)[l1 - c1] < col - k && break
nnz += 1
end
Expand All @@ -877,9 +877,9 @@ function tril(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0) where {Tv,Ti}
nzval = Vector{Tv}(undef, nnz)
A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
for col = 1 : min(n, m+k)
c1 = getcolptr(S)[col+1]-1
l2 = getcolptr(A)[col+1]-1
for c2 = 0 : l2 - getcolptr(A)[col]
c1 = colptrs(S)[col+1]-1
l2 = colptrs(A)[col+1]-1
for c2 = 0 : l2 - colptrs(A)[col]
rowvals(A)[l2 - c2] = rowvals(S)[c1]
nonzeros(A)[l2 - c2] = nonzeros(S)[c1]
c1 -= 1
Expand All @@ -902,7 +902,7 @@ function sparse_diff1(S::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
for col = 1 : n
last_row = 0
last_val = 0
for k = getcolptr(S)[col] : getcolptr(S)[col+1]-1
for k = colptrs(S)[col] : colptrs(S)[col+1]-1
row = rowvals(S)[k]
val = nonzeros(S)[k]
if row > 1
Expand Down Expand Up @@ -939,7 +939,7 @@ function sparse_diff2(a::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}

z = zero(Tv)

colptr_a = getcolptr(a)
colptr_a = colptrs(a)
rowval_a = rowvals(a)
nzval_a = nonzeros(a)

Expand Down Expand Up @@ -1045,7 +1045,7 @@ function opnorm(A::SparseMatrixCSC, p::Real=2)
nA::Tsum = 0
for j=1:n
colSum::Tsum = 0
for i = getcolptr(A)[j]:getcolptr(A)[j+1]-1
for i = colptrs(A)[j]:colptrs(A)[j+1]-1
colSum += abs(nonzeros(A)[i])
end
nA = max(nA, colSum)
Expand Down Expand Up @@ -1261,12 +1261,12 @@ function kron(A::SparseMatrixCSC{T1,S1}, B::SparseMatrixCSC{T2,S2}) where {T1,S1
colptrC[1] = 1
col = 1
@inbounds for j = 1:nA
startA = getcolptr(A)[j]
stopA = getcolptr(A)[j+1] - 1
startA = colptrs(A)[j]
stopA = colptrs(A)[j+1] - 1
lA = stopA - startA + 1
for i = 1:nB
startB = getcolptr(B)[i]
stopB = getcolptr(B)[i+1] - 1
startB = colptrs(B)[i]
stopB = colptrs(B)[i+1] - 1
lB = stopB - startB + 1
ptr_range = (1:lB) .+ (colptrC[col]-1)
colptrC[col+1] = colptrC[col] + lA*lB
Expand Down Expand Up @@ -1324,9 +1324,9 @@ inv(A::SparseMatrixCSC) = error("The inverse of a sparse matrix can often be den

# Copy colptr and rowval from one sparse matrix to another
function copyinds!(C::SparseMatrixCSC, A::SparseMatrixCSC)
if getcolptr(C) !== getcolptr(A)
resize!(getcolptr(C), length(getcolptr(A)))
copyto!(getcolptr(C), getcolptr(A))
if colptrs(C) !== colptrs(A)
resize!(colptrs(C), length(colptrs(A)))
copyto!(colptrs(C), colptrs(A))
end
if rowvals(C) !== rowvals(A)
resize!(rowvals(C), length(rowvals(A)))
Expand All @@ -1343,7 +1343,7 @@ function mul!(C::SparseMatrixCSC, A::SparseMatrixCSC, D::Diagonal{T, <:Vector})
Cnzval = nonzeros(C)
Anzval = nonzeros(A)
resize!(Cnzval, length(Anzval))
for col = 1:n, p = getcolptr(A)[col]:(getcolptr(A)[col+1]-1)
for col = 1:n, p = colptrs(A)[col]:(colptrs(A)[col+1]-1)
@inbounds Cnzval[p] = Anzval[p] * b[col]
end
C
Expand All @@ -1358,7 +1358,7 @@ function mul!(C::SparseMatrixCSC, D::Diagonal{T, <:Vector}, A::SparseMatrixCSC)
Anzval = nonzeros(A)
Arowval = rowvals(A)
resize!(Cnzval, length(Anzval))
for col = 1:n, p = getcolptr(A)[col]:(getcolptr(A)[col+1]-1)
for col = 1:n, p = colptrs(A)[col]:(colptrs(A)[col+1]-1)
@inbounds Cnzval[p] = b[Arowval[p]] * Anzval[p]
end
C
Expand Down Expand Up @@ -1394,7 +1394,7 @@ function rmul!(A::SparseMatrixCSC, D::Diagonal)
m, n = size(A)
(n == size(D, 1)) || throw(DimensionMismatch())
Anzval = nonzeros(A)
@inbounds for col = 1:n, p = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
@inbounds for col = 1:n, p = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
Anzval[p] = Anzval[p] * D.diag[col]
end
return A
Expand All @@ -1405,7 +1405,7 @@ function lmul!(D::Diagonal, A::SparseMatrixCSC)
(m == size(D, 2)) || throw(DimensionMismatch())
Anzval = nonzeros(A)
Arowval = rowvals(A)
@inbounds for col = 1:n, p = getcolptr(A)[col]:(getcolptr(A)[col + 1] - 1)
@inbounds for col = 1:n, p = colptrs(A)[col]:(colptrs(A)[col + 1] - 1)
Anzval[p] = D.diag[Arowval[p]] * Anzval[p]
end
return A
Expand Down
Loading