Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

sprand and SparseMatrixCSC constructor simplifications #30617

Merged
merged 6 commits into from
Jan 22, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 27 additions & 81 deletions stdlib/SparseArrays/src/sparsematrix.jl
Original file line number Diff line number Diff line change
Expand Up @@ -373,12 +373,19 @@ SparseMatrixCSC(M::AbstractMatrix{Tv}) where {Tv} = SparseMatrixCSC{Tv,Int}(M)
SparseMatrixCSC{Tv}(M::AbstractMatrix{Tv}) where {Tv} = SparseMatrixCSC{Tv,Int}(M)
function SparseMatrixCSC{Tv,Ti}(M::AbstractMatrix) where {Tv,Ti}
require_one_based_indexing(M)
I = findall(x -> x != 0, M)
eltypeTiI = Ti[i[1] for i in I]
eltypeTiJ = Ti[i[2] for i in I]
eltypeTvV = Tv[M[i] for i in I]
return sparse_IJ_sorted!(eltypeTiI, eltypeTiJ, eltypeTvV, size(M)...)
I = Ti[]
V = Tv[]
i = 0
for v in M
i += 1
if !iszero(v)
push!(I, i)
push!(V, v)
end
end
return sparse_sortedlinearindices!(I, V, size(M)...)
end

function SparseMatrixCSC{Tv,Ti}(M::StridedMatrix) where {Tv,Ti}
nz = count(t -> t != 0, M)
colptr = zeros(Ti, size(M, 2) + 1)
Expand Down Expand Up @@ -456,56 +463,6 @@ sparse(A::AbstractMatrix{Tv}) where {Tv} = convert(SparseMatrixCSC{Tv,Int}, A)

sparse(S::SparseMatrixCSC) = copy(S)

sparse_IJ_sorted!(I,J,V,m,n) = sparse_IJ_sorted!(I,J,V,m,n,+)

sparse_IJ_sorted!(I,J,V::AbstractVector{Bool},m,n) = sparse_IJ_sorted!(I,J,V,m,n,|)

function sparse_IJ_sorted!(I::AbstractVector{Ti}, J::AbstractVector{Ti},
V::AbstractVector,
m::Integer, n::Integer, combine::Function) where Ti<:Integer
require_one_based_indexing(I, J, V)
m = m < 0 ? 0 : m
n = n < 0 ? 0 : n
if isempty(V); return spzeros(eltype(V),Ti,m,n); end

cols = zeros(Ti, n+1)
cols[1] = 1 # For cumsum purposes
cols[J[1] + 1] = 1

lastdup = 1
ndups = 0
I_lastdup = I[1]
J_lastdup = J[1]
L = length(I)

@inbounds for k=2:L
if I[k] == I_lastdup && J[k] == J_lastdup
V[lastdup] = combine(V[lastdup], V[k])
ndups += 1
else
cols[J[k] + 1] += 1
lastdup = k-ndups
I_lastdup = I[k]
J_lastdup = J[k]
if ndups != 0
I[lastdup] = I_lastdup
V[lastdup] = V[k]
end
end
end

colptr = cumsum!(similar(cols), cols)

# Allow up to 20% slack
if ndups > 0.2*L
numnz = L-ndups
deleteat!(I, (numnz+1):L)
deleteat!(V, (numnz+1):length(V))
end

return SparseMatrixCSC(m, n, colptr, I, V)
end

"""
sparse(I, J, V,[ m, n, combine])

Expand Down Expand Up @@ -1383,23 +1340,20 @@ function _sparse_findprevnz(m::SparseMatrixCSC, i::Integer)
end


function _sprand(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat, rfn)
m, n = Int(m), Int(n)
(m < 0 || n < 0) && throw(ArgumentError("invalid Array dimensions"))
0 <= density <= 1 || throw(ArgumentError("$density not in [0,1]"))
j, colm = 1, 0
rowval = randsubseq(r, 1:(m*n), density)
nnz = length(rowval)
colptr = Vector{Int}(undef, n + 1)
function sparse_sortedlinearindices!(I::Vector{Ti}, V::Vector, m::Int, n::Int) where Ti
length(I) == length(V) || throw(ArgumentError("I and V should have the same length"))
nnz = length(V)
colptr = Vector{Ti}(undef, n + 1)
j, colm = 1, 0
@inbounds for col = 1:n+1
colptr[col] = j
while j <= nnz && (rowval[j] -= colm) <= m
while j <= nnz && (I[j] -= colm) <= m
j += 1
end
j <= nnz && (rowval[j] += colm)
j <= nnz && (I[j] += colm)
colm += m
end
return SparseMatrixCSC(m, n, colptr, rowval, rfn(nnz))
return SparseMatrixCSC(m, n, colptr, I, V)
end

"""
Expand All @@ -1423,23 +1377,15 @@ julia> sprand(Float64, 3, 0.75)
[3] = 0.298614
```
"""
function sprand(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat,
rfn::Function, ::Type{T}=eltype(rfn(r,1))) where T
m,n = Int(m), Int(n)
N = m*n
N == 0 && return spzeros(T,m,n)
N == 1 && return rand(r) <= density ? sparse([1], [1], rfn(r,1)) : spzeros(T,1,1)
_sprand(r,m,n,density,i->rfn(r,i))
function sprand(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat, rfn::Function, ::Type{T} = eltype(rfn(r, 1))) where T
m, n = Int(m), Int(n)
(m < 0 || n < 0) && throw(ArgumentError("invalid Array dimensions"))
0 <= density <= 1 || throw(ArgumentError("$density not in [0,1]"))
I = randsubseq(r, 1:(m*n), density)
return sparse_sortedlinearindices!(I, convert(Vector{T}, rfn(r,length(I))), m, n)
end

function sprand(m::Integer, n::Integer, density::AbstractFloat,
rfn::Function, ::Type{T}=eltype(rfn(1))) where T
m,n = Int(m), Int(n)
N = m*n
N == 0 && return spzeros(T,m,n)
N == 1 && return rand() <= density ? sparse([1], [1], rfn(1)) : spzeros(T,1,1)
_sprand(GLOBAL_RNG,m,n,density,rfn)
end
sprand(m::Integer, n::Integer, density::AbstractFloat, rfn::Function, ::Type{T} = eltype(rfn(1))) where T = sprand(GLOBAL_RNG,m,n,density,(r, i) -> rfn(i))

truebools(r::AbstractRNG, n::Integer) = fill(true, n)

Expand Down