Skip to content

Commit

Permalink
Add qr(::AbstractVector), qr!(::AbstractVector)
Browse files Browse the repository at this point in the history
Compute polar decomposition of vector

`qr[!]` is equivalent to `v->(normalize[!](v), norm(v))` but is
convenient for reusing the norm calculation, e.g. for Krylov subspace
algorithms.

Also refactors the in place normalization code to a separate routine,
`__normalize!()`, so that it can be reused by `qr!`
  • Loading branch information
jiahao committed Oct 21, 2015
1 parent db90ac0 commit eecf530
Show file tree
Hide file tree
Showing 3 changed files with 57 additions and 3 deletions.
9 changes: 6 additions & 3 deletions base/linalg/generic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -547,15 +547,18 @@ Normalize the vector `v` in-place with respect to the `p`-norm.
# See also
`normalize`
`normalize`, `qr`
"""
function normalize!(v::AbstractVector, p::Real=2)
nrm = norm(v, p)
__normalize!(v, nrm)
end

@inline function __normalize!{T}(v::AbstractVector{T}, nrm::T)
#The largest positive floating point number whose inverse is less than
#infinity
const δ = inv(prevfloat(typemax(float(nrm))))
const δ = inv(prevfloat(typemax(float(T))))

if nrm δ #Safe to multiply with inverse
invnrm = inv(nrm)
Expand Down Expand Up @@ -590,7 +593,7 @@ Normalize the vector `v` with respect to the `p`-norm.
# See also
`normalize!`
`normalize!`, `qr`
"""
normalize(v::AbstractVector, p::Real=2) = v/norm(v, p)

43 changes: 43 additions & 0 deletions base/linalg/qr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,49 @@ function _qr(A::Union{Number, AbstractMatrix}, ::Type{Val{true}}; thin::Bool=tru
full(getq(F), thin=thin), F[:R]::Matrix{eltype(F)}, F[:p]::Vector{BlasInt}
end

"""
qr(v::AbstractVector)
Computes the polar decomposition of a vector.
# Input
- `v::AbstractVector` - vector to normalize
# Outputs
- `w` - A unit vector in the direction of `v`
- `r` - The norm of `v`
# See also
`normalize`, `normalize!`, `qr!`
"""
function qr(v::AbstractVector)
nrm = norm(v)
v/nrm, nrm
end

"""
qr!(v::AbstractVector)
Computes the polar decomposition of a vector.
# Input
- `v::AbstractVector` - vector to normalize
# Outputs
- `w` - A unit vector in the direction of `v`
- `r` - The norm of `v`
# See also
`normalize`, `normalize!`, `qr`
"""
function qr!(v::AbstractVector)
nrm = norm(v)
__normalize!(v, nrm), nrm
end


convert{T}(::Type{QR{T}},A::QR) = QR(convert(AbstractMatrix{T}, A.factors), convert(Vector{T}, A.τ))
convert{T}(::Type{Factorization{T}}, A::QR) = convert(QR{T}, A)
convert{T}(::Type{QRCompactWY{T}},A::QRCompactWY) = QRCompactWY(convert(AbstractMatrix{T}, A.factors), convert(AbstractMatrix{T}, A.T))
Expand Down
8 changes: 8 additions & 0 deletions test/linalg/qr.jl
Original file line number Diff line number Diff line change
Expand Up @@ -162,3 +162,11 @@ let
Q=full(qrfact(A)[:Q])
@test vecnorm(A-Q) < eps()
end

let
debug && println("qr on AbstractVector")

v = [3.0, 4.0]
@test qr(v) == ([0.6, 0.8], 5.0)
end

0 comments on commit eecf530

Please sign in to comment.