Skip to content

Commit

Permalink
Merge pull request #458 from mronian/add-hist-eq
Browse files Browse the repository at this point in the history
Histogram Equalisation
  • Loading branch information
timholy authored Jun 14, 2016
2 parents f50b32b + 724735f commit 7581b75
Show file tree
Hide file tree
Showing 3 changed files with 102 additions and 1 deletion.
1 change: 1 addition & 0 deletions docs/src/function_reference.md
Original file line number Diff line number Diff line change
Expand Up @@ -282,6 +282,7 @@ findlocalminima

```@docs
imhist
histeq
```

# Filtering kernels
Expand Down
3 changes: 2 additions & 1 deletion src/Images.jl
Original file line number Diff line number Diff line change
Expand Up @@ -217,6 +217,7 @@ export # types
imgaussiannoise,
imgradients,
imhist,
histeq,
imlaplacian,
imlineardiffusion,
imlog,
Expand Down Expand Up @@ -280,7 +281,7 @@ Algorithms:
- Resizing: `restrict`, `imresize` (not yet exported)
- Filtering: `imfilter`, `imfilter_fft`, `imfilter_gaussian`, `imfilter_LoG`, `imROF`, `ncc`, `padarray`
- Filtering kernels: `ando[345]`, `guassian2d`, `imaverage`, `imdog`, `imlaplacian`, `prewitt`, `sobel`
- Exposure : `imhist`
- Exposure : `imhist`, `histeq`
- Gradients: `backdiffx`, `backdiffy`, `forwarddiffx`, `forwarddiffy`, `imgradients`
- Edge detection: `imedge`, `imgradients`, `thin_edges`, `magnitude`, `phase`, `magnitudephase`, `orientation`
- Corner detection: `imcorner`
Expand Down
99 changes: 99 additions & 0 deletions src/algorithms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1239,6 +1239,105 @@ end

imhist{T<:Union{Gray,Number}}(img::AbstractArray{T}, nbins, minval, maxval) = imhist(img, nbins, convert(T, minval), convert(T, maxval))

"""
```
hist_equalised_img = histeq(img, nbins, dtype = "8bit")
hist_equalised_img = histeq(img, nbins, minval, maxval, dtype = "8bit")
```
Returns a histogram equalised image with a granularity of approximately `nbins`
number of bins. An optional `dtype` argument (defaulting to 8bit) can be specified
to choose the number of bits of the returned image.
The `histeq` function can handle a variety of input types. The returned image depends
on the input type. If the input is an `Image` then the resulting image is of the same type
and has the same properties.
For coloured images, the input is converted to YCbCr type and the Y channel is equalised. This
is the combined with the Cb and Cr channels and the resulting image converted to the same type
as the input.
If minval and maxval are specified then only the intensities in the range
(minval, maxval) are equalised.
"""

RET_TYPE = Dict("8bit" => Gray{U8}, "16bit" => Gray{FixedPointNumbers.UFixed{UInt16,16}})
Y_MIN = 16
Y_MAX = 235

function _prep_image_for_histeq(img::AbstractArray, dtype)
img_shape = size(img)
if dtype == "8bit"
img = [convert(base_colorant_type(c){FixedPointNumbers.UFixed{UInt8,8}}, c) for c in img]
elseif dtype == "16bit"
img = [convert(base_colorant_type(c){FixedPointNumbers.UFixed{UInt16,16}}, c) for c in img]
end
img = reshape(img, img_shape)
img
end

histeq{T<:Colorant}(img::AbstractArray{T}, nbins, dtype = "8bit") = histeq(_prep_image_for_histeq(img, dtype), nbins, zero(YCbCr), zero(YCbCr))
histeq{T<:Colorant}(img::AbstractArray{T}, nbins, minval, maxval, dtype = "8bit") = histeq(_prep_image_for_histeq(img, dtype), nbins, minval, maxval)

function recompose_y(c::Color, eq_Y::Float32)
c_ycbcr = convert(YCbCr, color(c))
ret_c = YCbCr(eq_Y, c_ycbcr.cb, c_ycbcr.cr)
ret_c
end

function recompose_y(c::TransparentColor, eq_Y::Float32)
c_ycbcr = convert(YCbCrA, color(c))
ret_c = YCbCrA(eq_Y, c_ycbcr.cb, c_ycbcr.cr, c_ycbcr.alpha)
ret_c
end

function histeq{T<:Colorant}(img::AbstractArray{T}, nbins, minval, maxval)
Y = [convert(YCbCr, color(c)).y for c in img]
if maxval == zero(YCbCr{Float32})
eq_Y = histeq(Y, nbins, Y_MIN, Y_MAX)
else
eq_Y = histeq(Y, nbins, minval, maxval)
end
hist_equalised_img = reshape([convert(T, recompose_y(c, eq_Y[i])) for (i, c) in enumerate(img)], size(img))
hist_equalised_img
end

function histeq(img::AbstractImage, nbins, dtype = "8bit")
hist_equalised_img = histeq(data(img), nbins, dtype)
hist_equalised_img = shareproperties(img, hist_equalised_img)
hist_equalised_img
end

function histeq(img::AbstractImage, nbins, minval, maxval, dtype = "8bit")
hist_equalised_img = histeq(data(img), nbins, minval, maxval, dtype)
hist_equalised_img = shareproperties(img, hist_equalised_img)
hist_equalised_img
end

function histeq{T<:TransparentGray}(img::AbstractArray{T}, args...)
opaque_img = [color(c) for c in img]
hist_equalised_img = histeq(opaque_img, args...)
hist_equalised_img = reshape([convert(T, AGray(hist_equalised_img[i], alpha(c))) for (i, c) in enumerate(img)], size(img))
hist_equalised_img
end

histeq{T<:Gray}(img::AbstractArray{T}, nbins, dtype = "8bit") = histeq(_prep_image_for_histeq(img, dtype), nbins, ColorVectorSpace.typemin(RET_TYPE[dtype]), ColorVectorSpace.typemax(RET_TYPE[dtype]))

function histeq{T<:Union{Gray,Number}}(img::AbstractArray{T}, nbins::Int, minval::T, maxval::T)
bins, histogram = imhist(img, nbins, minval, maxval)
cdf = cumsum(histogram[2:end-1])
img_shape = size(img)
cdf_length = size(cdf)[1]
hist_equalised_img = [max(1,Int(ceil((x-minval)*cdf_length/(maxval-minval)))) for x in img]
hist_equalised_img = [minval + ((cdf[x]-cdf[1])*(maxval-minval)/(cdf[end]-cdf[1])) for x in hist_equalised_img]
hist_equalised_img = reshape(hist_equalised_img, img_shape)
hist_equalised_img
end

histeq{T<:Number}(img::AbstractArray{T}, nbins) = histeq(img, nbins, minfinite(img), maxfinite(img))

histeq{T<:Union{Gray,Number}}(img::AbstractArray{T}, nbins, minval, maxval) = histeq(img, Int(nbins), convert(T, minval), convert(T, maxval))

"""
`imgr = restrict(img[, region])` performs two-fold reduction in size
Expand Down

0 comments on commit 7581b75

Please sign in to comment.