Machine Learning as a Service (MLaaS) platform based on ADMIRABLE and BEST-AI research groups methods.
This application is described as one of the result of two different projects (with objectives partially overlapping, and being this application in the intersection of the objectives):
- Project "Algoritmos de ensembles para problemas de salidas múltiples - nuevos desarrollos y aplicaciones" from "Ministerio de Economía y Competitividad" (reference: TIN2015-67534-P)
- Project "Minería de datos para la mejora del mantenimiento y disponibilidad de máquinas de altas presiones" from "Consejería de Educación de la Junta de Castilla y León" (reference: BU085P17)
- Clone this repository
$ git clone https://github.com/JoseBarbero/UBUMLaaS.git
- Go to UBUMLaaS repository's folder
$ cd UBUMLaaS
- Create a conda environment
$ conda env create -f UBUMLaaS_env.yml
- Activate environment
$ conda activate UBUMLaaS
- Modify env_variables.sh with properly values
export SECRET_KEY=<app secret key> export EMAIL_AC=<email> export EMAIL_PASS=<email-password> export EMAIL_URL=<email-url> export FLASK_ENV=development #development or production LIBFOLDER=/absolute/path/to/UBUMLaaS
- With the conda environment UBUMLaaS, execute the script to export environment variables when activate conda env.
$ source env_vars_to_conda.sh
- Create database
Opt: Download a database and put it in ./ubumlaas/
$ mv data_base.sqlite ubumlaas/data.sqlite
- Install Redis-Server
Caution: Close all workers of RQ before stop redis-server
$ sudo apt install redis-server $ sudo service redis-server start $ sudo systemctl enable redis-server #If you want to initialize the service in startup
- Inside the UBUMLaaS repository's folder, activate conda environment if not activated.
$ conda activate UBUMLaaS
- Execute to run the server
python app.py
- Execute migrate.py
$ python migrate.py