Skip to content

Commit

Permalink
2023-10-27-bert_classifier_tiny_sst2_1_mobile_2_distillation_en (#14046)
Browse files Browse the repository at this point in the history
* Add model 2023-11-01-rubert_tiny2_russian_go_emotions_ru

* Add model 2023-11-01-bert_sequence_classifier_base_turkish_sentiment_cased_tr

* Add model 2023-11-01-bert_sequence_classifier_turkish_text_classification_tr

* Add model 2023-11-01-finetuned_yelp_donlapark_en

* Add model 2023-11-01-electra_classifier_korean_small_finetuned_sentiment_ko

* Add model 2023-11-01-bert_sequence_classifier_pred_timeperiod_zh

* Add model 2023-11-01-bert_sequence_classifier_electricidad_base_finetuned_sst2_en

* Add model 2023-11-01-bertimbau_base_finetuned_brazilian_court_decisions_bt16_ep15_pt

* Add model 2023-11-01-nlp_qual_q3i_en

* Add model 2023-11-01-news_category_classification_turkish_tr

* Add model 2023-11-01-bert_base_uncased_sst_2_en

* Add model 2023-11-01-electra_classifier_korean_hatespeech_ko

* Add model 2023-11-01-bert_sequence_classifier_poem_qafiyah_detection_ar

* Add model 2023-11-01-russian_inappropriate_messages_ru

* Add model 2023-11-01-bert_base_uncased_wnli_en

* Add model 2023-11-01-electra_classifier_korean_hatespeech_multilabel_ko

* Add model 2023-11-01-electra_classifier_turkish_sentiment_analysis_tr

* Add model 2023-11-01-bert_sequence_classifier_toxicity_ru

* Add model 2023-11-01-bert_base_uncased_yahoo_answers_topics_en

* Add model 2023-11-01-minilm_l6_h384_uncased_sst2_en

* Add model 2023-11-01-malay_marco_tinybert_l_2_v2_en

* Add model 2023-11-01-bert_sequence_classifier_erlangshen_roberta_330m_nli_zh

* Add model 2023-11-01-bert_base_chinese_finetuning_financial_news_sentiment_v2_zh

* Add model 2023-11-01-bleurt_tiny_512_en

* Add model 2023-11-01-sands_en

* Add model 2023-11-01-bert_sequence_classifier_response_quality_base_ru

* Add model 2023-11-01-electra_classifier_mrm8488_electricidad_small_finetuned_amazon_review_classification_es

* Add model 2023-11-01-cross_encoder_portuguese_sentence_similarity_en

* Add model 2023-11-01-bert_base_uncased_sst2_yoshitomo_matsubara_en

* Add model 2023-11-01-bert_sequence_classifier_large_cased_finetuned_mrpc_en

* Add model 2023-11-01-unbias_classification_bert_en

* Add model 2023-11-01-bert_sequence_classifier_autonlp_gibb_detect_515314387_en

* Add model 2023-11-01-finance_sentiment_chinese_base_zh

* Add model 2023-11-01-bert_base_uncased_yelp_polarity_textattack_en

* Add model 2023-11-01-malay_marco_tinybert_l_4_en

* Add model 2023-11-01-bert_base_cased_finetuned_finbert_en

* Add model 2023-11-01-electra_classifier_qd_quora_base_turkish_tr

* Add model 2023-11-01-kpf_cross_encoder_v1_ko

* Add model 2023-11-01-bert_sequence_classifier_tiny_finetuned_fake_news_detection_en

* Add model 2023-11-01-xuyuan_trial_sentiment_bert_chinese_en

* Add model 2023-11-01-parrot_fluency_model_en

* Add model 2023-11-01-ai_oriya_human_text_classification_en

* Add model 2023-11-01-cross_encoder_malay_marco_minilm_l_12_v2_tuned_mediqa_v1_en

* Add model 2023-11-01-bert_agnews_en

* Add model 2023-11-01-bert_sequence_classifier_multi2convai_corona_english_bert_en

* Add model 2023-11-01-paragraph_s36000_en

* Add model 2023-11-01-finetuned_yelp_shelterrp_en

* Add model 2023-11-01-bert_fine_tuned_hatexplain_en

* Add model 2023-11-01-ernie_finetuned_qqp_en

* Add model 2023-11-01-re2g_reranker_nq_en

* Add model 2023-11-01-toutiao_zh

* Add model 2023-11-01-bert_sequence_classifier_multi2convai_quality_french_mbert_fr

* Add model 2023-11-01-bert_base_uncased_sts_b_en

* Add model 2023-11-01-bert_base_cased_fever_en

* Add model 2023-11-01-partypress_monolingual_denmark_da

* Add model 2023-11-01-bert_base_uncased_cola_modeltc_en

* Add model 2023-11-01-bert_large_uncased_qqp_en

* Add model 2023-11-01-kcbert_base_finetuned_hate_ko

* Add model 2023-11-01-question_vs_statement_classifier_en

* Add model 2023-11-01-finetuned_bert_base_on_iemocap_1_en

* Add model 2023-11-01-bert_tiny_sst2_en

* Add model 2023-11-01-bert_sequence_classifier_mini_finetuned_age_news_classification_en

* Add model 2023-11-01-bert_sequence_classifier_tiny_finetuned_yahoo_answers_topics_en

* Add model 2023-11-01-tool_choose_ko

* Add model 2023-11-01-sentiment_xdistil_uncased_en

* Add model 2023-11-01-rubert_base_cased_cedr_russian_emotion_ru

* Add model 2023-11-01-biomednlp_pubmedbert_base_uncased_abstract_fulltext_finetuned_mnli_en

* Add model 2023-11-01-bert_base_multilingual_cased_language_detection_xx

* Add model 2023-11-01-rubert_tiny_replicas_classifier_ru

* Add model 2023-11-01-bert_emotion_analysis_en

* Add model 2023-11-01-autotrain_text_sentiment_indonlu_smse_2885384370_id

* Add model 2023-11-01-bert_sequence_classifier_tweet_eval_emotion_en

* Add model 2023-11-01-indonesia_bert_sentiment_classification_en

* Add model 2023-11-01-indic_abusive_allinone_muril_xx

* Add model 2023-11-01-swedish_sentiment_violence_sv

* Add model 2023-11-01-sdg_classification_bert_en

* Add model 2023-11-01-miread_neuro_large_en

* Add model 2023-11-01-rubert_base_qa_ranker_ru

* Add model 2023-11-01-bert_large_legal_sentence_classification_en

* Add model 2023-11-01-danish_binary_emotion_classification_base_da

* Add model 2023-11-01-bert_base_uncased_mrpc_yoshitomo_matsubara_en

* Add model 2023-11-01-bert_base_uncased_sst2_howey_en

* Add model 2023-11-01-cross_encoder_bert_base_zh

* Add model 2023-11-01-electra_classifier_korean_base_finetuned_sentiment_ko

* Add model 2023-11-01-bert_base_portuguese_cased_assin2_similarity_pt

* Add model 2023-11-01-bert_base_uncased_finetuned_emotion_vasanth_en

* Add model 2023-11-01-hate_speech_berturk_en

* Add model 2023-11-01-electra_classifier_korean_base_gender_bias_ko

* Add model 2023-11-01-kcbert_formal_classifier_ko

* Add model 2023-11-01-synteract_en

* Add model 2023-11-01-electra_classifier_korean_base_bias_ko

* Add model 2023-11-01-english_abusive_muril_en

* Add model 2023-11-01-electra_classifier_korean_small_finetuned_intent_cls_ko

* Add model 2023-11-01-bert_base_multilingual_codemixed_cased_sentiment_xx

* Add model 2023-11-01-sentence_level_certainty_en

* Add model 2023-11-01-modelloscenari_en

* Add model 2023-11-01-bio_clinicalbert_zero_shot_sentiment_model_en

* Add model 2023-11-01-electra_classifier_mindlogic_korean_ai_citizen_base_ko

* Add model 2023-11-01-roberta_based_uncased_finetuned_financial_headline_en

* Add model 2023-11-01-bert_xnli_spanish_classifier_en

* Add model 2023-11-01-bert_sequence_classifier_russian_base_cased_nli_twoway_ru

* Add model 2023-11-01-trainer_projet7_en

* Add model 2023-11-01-bert_base_multilingual_uncased_sentiment_3labels_xx

* Add model 2023-11-01-albert_sentiment_tw

* Add model 2023-11-01-electra_classifier_beep_kc_base_bias_ko

* Add model 2023-11-01-bert_italian_uncased_iptc_headlines_it

* Add model 2023-11-01-text_classification_hyosyung_highschool_en

* Add model 2023-11-01-biolinkbert_large_mnli_snli_en

* Add model 2023-11-01-tda_bert_english_cola_en

* Add model 2023-11-01-udot_mk2_en

* Add model 2023-11-01-gk_hinglish_sentiment_en

* Add model 2023-11-01-bert_base_uncased_rte_howey_en

* Add model 2023-11-01-sdg_classifier_osdg_en

* Add model 2023-11-01-bert_base_uncased_imdb_textattack_en

* Add model 2023-11-01-hate_speech_italian_it

* Add model 2023-11-01-bio_clinicalbert_finetuned_medicalcondition_en

* Add model 2023-11-01-bert_tiny_emotion_intent_en

* Add model 2023-11-01-frugalscore_tiny_bert_base_bert_score_en

* Add model 2023-11-01-awesome_japanese_nlp_classification_model_en

* Add model 2023-11-01-ais_ru

* Add model 2023-11-01-bert_sequence_classifier_multi2convai_logistics_english_bert_en

* Add model 2023-11-01-rubert_tiny2_russian_sentiment_ru

* Add model 2023-11-01-unbias_classification_bert_old_en

* Add model 2023-11-01-deepfeatecosystemcrossencoder_en

* Add model 2023-11-01-bertimbau_base_finetuned_lener_breton_finetuned_brazilian_court_decisions_pt

* Add model 2023-11-01-danish_hatespeech_classification_base_da

* Add model 2023-11-01-finetuned_yelp_oatnapat_en

* Add model 2023-11-01-bert_base_uncased_amazon_massive_intent_en

* Add model 2023-11-01-imdb_finetuned_bert_base_uncased_en

* Add model 2023-11-01-bert_base_uncased_mrpc_textattack_en

* Add model 2023-11-01-bert_sst2_en

* Add model 2023-11-01-bert_classifier_topic_v5_en

* Add model 2023-11-01-sscibert_politics_en

* Add model 2023-11-01-aimesoft_test_text_classification_4_en

* Add model 2023-11-01-minilm_finetuned_chi_dedupe_en

* Add model 2023-11-01-sentiment_model_sample_27go_emotion_en

* Add model 2023-11-01-finetuning_multilingual_bert_thumbs_xx

* Add model 2023-11-01-bert_large_portuguese_cased_assin2_similarity_pt

* Add model 2023-11-01-cross_encoder_italian_bert_stsb_it

* Add model 2023-11-01-yt_negativity_en

* Add model 2023-11-01-rubert_tiny_stance_calssification_en

* Add model 2023-11-01-finetunebertclsfaq_en

* Add model 2023-11-01-electra_classifier_large_discriminator_nli_efl_hateval_en

* Add model 2023-11-01-rubert_base_intent_detection_ru

* Add model 2023-11-01-bert_tiny_mnli_en

* Add model 2023-11-01-bert_large_uncased_mnli_yoshitomo_matsubara_en

* Add model 2023-11-01-tijdelijk_en

* Add model 2023-11-01-product_name_classifier_en

* Add model 2023-11-01-finbert_esg_9_categories_en

* Add model 2023-11-01-trac2020_all_c_bert_base_multilingual_uncased_xx

* Add model 2023-11-01-nepalisentimentanalysis_ne

* Add model 2023-11-01-malay_marco_tinybert_l_6_en

* Add model 2023-11-01-bleurt_base_512_en

* Add model 2023-11-01-grammer_classiffication_en

* Add model 2023-11-01-thucnews_en

* Add model 2023-11-01-bert_portuguese_emotion_en

* Add model 2023-11-01-sa_bertchatgptapp_en

* Add model 2023-11-01-finetuned_bertu_sentiment_en

* Add model 2023-11-01-bert_resume_job_recommender_en

* Add model 2023-11-01-bert_election2020_twitter_stance_trump_ke_mlm_en

* Add model 2023-11-01-minilm_finetuned_chi_dedupe_southern_sotho_en

* Add model 2023-11-01-rubert_tiny2_cognitive_bias_en

* Add model 2023-11-01-nlp_qual_q2i_en

* Add model 2023-11-01-bert_large_uncased_qnli_en

* Add model 2023-11-01-bert_base_uncased_mnli_modeltc_en

* Add model 2023-11-01-danish_subjectivivity_classification_base_da

* Add model 2023-11-01-stsb_tinybert_l_4_en

* Add model 2023-11-01-finbertptbr_pt

* Add model 2023-11-01-thestats2_en

* Add model 2023-11-01-rubert_russian_sentiment_rusentiment_ru

* Add model 2023-11-01-cryptobert_en

* Add model 2023-11-01-rubert_tiny_comp_question_classification_en

* Add model 2023-11-01-bert_tiny_finetuned_enron_spam_detection_mrm8488_en

* Add model 2023-11-01-insurance_multiple_label_my83_v2_en

* Add model 2023-11-01-sentence_aldi_en

* Add model 2023-11-01-sbert_russian_sentiment_rusentiment_ru

* Add model 2023-11-01-bert_base_codemixed_uncased_sentiment_hi

* Add model 2023-11-01-stance_detection_en

* Add model 2023-11-01-tydiqa_boolean_question_classifier_en

* Add model 2023-11-01-bert_base_personality_en

* Add model 2023-11-01-beto_contextualized_hate_speech_es

* Add model 2023-11-01-bert_sequence_classifier_autonlp_triage_35248482_en

* Add model 2023-11-01-malay_marco_tinybert_l_2_en

* Add model 2023-11-01-distilbert_base_task_multi_label_classification_en

* Add model 2023-11-01-one_for_all_toxicity_v3_xx

* Add model 2023-11-01-fine_tune_chinese_sentiment_en

* Add model 2023-11-01-spam_usernames_classifier_xx

* Add model 2023-11-01-agribert_clfmodel_en

* Add model 2023-11-01-english_sarcasm_detector_en

* Add model 2023-11-01-bert_base_uncased_mnli_ishan_en

* Add model 2023-11-01-bert_sequence_classifier_erlangshen_roberta_110m_similarity_zh

* Add model 2023-11-01-chatgpt_qa_detector_roberta_chinese_zh

* Add model 2023-11-01-bert_base_uncased_finetuned_sentiments_en

* Add model 2023-11-01-bert_base_intent_en

* Add model 2023-11-01-bioformer_8l_qnli_en

* Add model 2023-11-01-bert_seq_training_model_en

* Add model 2023-11-01-bert_base_uncased_qnli_en

* Add model 2023-11-01-nlp_qual_qual_en

* Add model 2023-11-01-racebert_ethnicity_en

* Add model 2023-11-01-news_genre_classifier_xx

* Add model 2023-11-01-electra_classifier_korean_small_finetuned_nsmc_ko

* Add model 2023-11-01-roberta_tiny_imdb_en

* Add model 2023-11-01-sentiment_analysis_pretrained_en

* Add model 2023-11-01-nlp_classifier_news_turkish_tr

* Add model 2023-11-01-bert_base_uncased_mnli_en

* Add model 2023-11-01-biobertrelationgenesdiseases_en

* Add model 2023-11-01-frenchmedmcqa_biobert_v1_1_wikipedia_bm25_fr

* Add model 2023-11-01-bert_base_polish_cyberbullying_pl

* Add model 2023-11-01-lawinorders_en

* Add model 2023-11-01-bert_emails_en

* Add model 2023-11-01-bert_base_uncased_cola_en

* Add model 2023-11-01-bert_base_claimbuster_en

* Add model 2023-11-01-bert_sequence_classifier_large_cased_finetuned_wnli_en

* Add model 2023-11-01-danish_discourse_coherence_base_da

* Add model 2023-11-01-maverick_moneyball_en

* Add model 2023-11-01-biobert_icd10_l3_mimic_en

* Add model 2023-11-01-test_trainer_louislian2341_en

* Add model 2023-11-01-bert_base_uncased_stsb_yoshitomo_matsubara_en

* Add model 2023-11-01-news_category_classifier_distilbert_en

* Add model 2023-11-01-finbert_tone_finetuned_fintwitter_classification_en

* Add model 2023-11-01-urdu_abusive_muril_ur

* Add model 2023-11-01-feather_berts_0_connectivity_en

* Add model 2023-11-01-base_model_stevendee5_en

* Add model 2023-11-01-tiny_bert_jdc_en

* Add model 2023-11-01-hindi_abusive_muril_hi

* Add model 2023-11-01-minilm_finetuned_emotion_celorenzo2104_en

* Add model 2023-11-01-pold_en

* Add model 2023-11-01-pari_conditions_fine_tuned_en

* Add model 2023-11-01-final_project_finetuned_bert_base_multilingual_cased_english_xx

* Add model 2023-11-01-swedish_sentiment_fear_sv

* Add model 2023-11-01-pari_features_fine_tuned_en

* Add model 2023-11-01-unicausal_seq_baseline_en

* Add model 2023-11-01-bert_base_uncased_snli_textattack_en

* Add model 2023-11-01-bert_embedding_en

* Add model 2023-11-01-clf_bert_e_en

* Add model 2023-11-01-tda_itabert_ita_cola_it

* Add model 2023-11-01-rubert_tiny_questions_classifier_ru

* Add model 2023-11-01-chinese_macbert_base_text_classification_en

* Add model 2023-11-01-toxic_bert_german_de

* Add model 2023-11-01-abusive_tagalog_profanity_detection_en

* Add model 2023-11-01-bert_base_uncased_mrpc_modeltc_en

* Add model 2023-11-01-bert_base_sentiment_analysis_french_en

* Add model 2023-11-01-bert_base_multilingual_uncased_sentiment_b1tk40s_xx

* Add model 2023-11-01-bleurt_large_128_en

* Add model 2023-11-01-chemical_bert_uncased_pharmaceutical_chemical_classifier_en

* Add model 2023-11-01-sell_buy_intent_classifier_bert_mini_en

* Add model 2023-11-01-bert_jigsaw_identityhate_en

* Add model 2023-11-01-bert_base_turkish_job_advertisement_tr

* Add model 2023-11-01-finance_sentiment_german_base_de

* Add model 2023-11-01-pubmedbert_mnli_mednli_en

---------

Co-authored-by: ahmedlone127 <ahmedlone127@gmail.com>
  • Loading branch information
jsl-models and ahmedlone127 authored Nov 1, 2023
1 parent ad57fee commit b5f5d92
Show file tree
Hide file tree
Showing 698 changed files with 70,232 additions and 0 deletions.
97 changes: 97 additions & 0 deletions docs/_posts/ahmedlone127/2023-10-27-bert_base_cased_best_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_cased_best BertForSequenceClassification from edwardgowsmith
author: John Snow Labs
name: bert_base_cased_best
date: 2023-10-27
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_cased_best` is a English model originally trained by edwardgowsmith.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_cased_best_en_5.1.4_3.4_1698397074640.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_cased_best_en_5.1.4_3.4_1698397074640.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_cased_best","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_cased_best","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_cased_best|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|405.9 MB|

## References

https://huggingface.co/edwardgowsmith/bert-base-cased-best
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3 BertForSequenceClassification from hw2942
author: John Snow Labs
name: bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3
date: 2023-10-27
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3` is a English model originally trained by hw2942.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3_en_5.1.4_3.4_1698395887581.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3_en_5.1.4_3.4_1698395887581.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v3|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|383.3 MB|

## References

https://huggingface.co/hw2942/bert-base-chinese-wallstreetcn-morning-news-market-overview-SSEC-f1-v3
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4 BertForSequenceClassification from hw2942
author: John Snow Labs
name: bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4
date: 2023-10-27
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4` is a English model originally trained by hw2942.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4_en_5.1.4_3.4_1698396592548.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4_en_5.1.4_3.4_1698396592548.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v4|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|383.3 MB|

## References

https://huggingface.co/hw2942/bert-base-chinese-wallstreetcn-morning-news-market-overview-SSEC-f1-v4
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
---
layout: model
title: English bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5 BertForSequenceClassification from hw2942
author: John Snow Labs
name: bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5
date: 2023-10-27
tags: [bert, en, open_source, sequence_classification, onnx]
task: Text Classification
language: en
edition: Spark NLP 5.1.4
spark_version: 3.4
supported: true
engine: onnx
annotator: BertForSequenceClassification
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained BertForSequenceClassification model, adapted from Hugging Face and curated to provide scalability and production-readiness using Spark NLP.`bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5` is a English model originally trained by hw2942.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5_en_5.1.4_3.4_1698397380576.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5_en_5.1.4_3.4_1698397380576.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5","en")\
.setInputCols(["document","token"])\
.setOutputCol("class")

pipeline = Pipeline().setStages([document_assembler, tokenizer, sequenceClassifier])

data = spark.createDataFrame([["PUT YOUR STRING HERE"]]).toDF("text")

result = pipeline.fit(data).transform(data)

```
```scala

val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val sequenceClassifier = BertForSequenceClassification.pretrained("bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5","en")
.setInputCols(Array("document","token"))
.setOutputCol("class")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, sequenceClassifier))

val data = Seq("PUT YOUR STRING HERE").toDS.toDF("text")

val result = pipeline.fit(data).transform(data)


```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|bert_base_chinese_wallstreetcn_morning_news_market_overview_ssec_f1_v5|
|Compatibility:|Spark NLP 5.1.4+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents, token]|
|Output Labels:|[class]|
|Language:|en|
|Size:|383.3 MB|

## References

https://huggingface.co/hw2942/bert-base-chinese-wallstreetcn-morning-news-market-overview-SSEC-f1-v5
Loading

0 comments on commit b5f5d92

Please sign in to comment.