Skip to content

Commit

Permalink
Merge pull request #13822 from JohnSnowLabs/release/443-release-candi…
Browse files Browse the repository at this point in the history
…date

release/443-release-candidate
  • Loading branch information
maziyarpanahi authored May 25, 2023
2 parents ac57000 + 01eae96 commit 6ae3a2b
Show file tree
Hide file tree
Showing 1,406 changed files with 9,306 additions and 5,373 deletions.
19 changes: 19 additions & 0 deletions CHANGELOG
Original file line number Diff line number Diff line change
@@ -1,3 +1,22 @@
========
4.4.3
========
----------------
New Features & Enhancements
----------------
* New `multilabel` parameter to swtich from multi-class to multi-label on all Classifiers in Spark NLP: AlbertForSequenceClassification, BertForSequenceClassification, DeBertaForSequenceClassification, DistilBertForSequenceClassification, LongformerForSequenceClassification, RoBertaForSequenceClassification, XlmRoBertaForSequenceClassification, XlnetForSequenceClassification, BertForZeroShotClassification, DistilBertForZeroShotClassification, and RobertaForZeroShotClassification
* Refactor protected Params and Features to avoid unwanted exceptions during runtime https://github.com/JohnSnowLabs/spark-nlp/pull/13797
* Add proper documentation and instructions for ZeroShot classifiers: BertForZeroShotClassification, DistilBertForZeroShotClassification, and RobertaForZeroShotClassification https://github.com/JohnSnowLabs/spark-nlp/pull/13798
* Extend support for downloading models/pipelines directly by given name or S3 path in ResourceDownloader https://github.com/JohnSnowLabs/spark-nlp/pull/13796

----------------
Bug Fixes
----------------
* Fix pretrained pipelines that stopped working since 4.4.2 release on PySpark 3.0 and 3.1 versions (adding 123 new pipelines were added) https://github.com/JohnSnowLabs/spark-nlp/pull/13805
* Fix pretrained pipelines that stopped working since 4.4.2 release on PySpark 3.2 and 3.3 versions (adding 120 new pipelines) https://github.com/JohnSnowLabs/spark-nlp/pull/13811
* Fix Java compatibility issue caused by SystemUtils dependecy https://github.com/JohnSnowLabs/spark-nlp/pull/13806


========
4.4.2
========
Expand Down
90 changes: 45 additions & 45 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -161,11 +161,11 @@ documentation and examples
To use Spark NLP you need the following requirements:

- Java 8 and 11
- Apache Spark 3.3.x, 3.2.x, 3.1.x, 3.0.x
- Apache Spark 3.4.x, 3.3.x, 3.2.x, 3.1.x, 3.0.x

**GPU (optional):**

Spark NLP 4.4.2 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:
Spark NLP 4.4.3 is built with TensorFlow 2.7.1 and the following NVIDIA® software are only required for GPU support:

- NVIDIA® GPU drivers version 450.80.02 or higher
- CUDA® Toolkit 11.2
Expand All @@ -181,7 +181,7 @@ $ java -version
$ conda create -n sparknlp python=3.7 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==4.4.2 pyspark==3.3.1
$ pip install spark-nlp==4.4.3 pyspark==3.3.1
```

In Python console or Jupyter `Python3` kernel:
Expand Down Expand Up @@ -226,7 +226,7 @@ For more examples, you can visit our dedicated [examples](https://github.com/Joh

## Apache Spark Support

Spark NLP *4.4.2* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x
Spark NLP *4.4.3* has been built on top of Apache Spark 3.2 while fully supports Apache Spark 3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x

| Spark NLP | Apache Spark 2.3.x | Apache Spark 2.4.x | Apache Spark 3.0.x | Apache Spark 3.1.x | Apache Spark 3.2.x | Apache Spark 3.3.x | Apache Spark 3.4.x |
|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
Expand Down Expand Up @@ -265,7 +265,7 @@ Find out more about `Spark NLP` versions from our [release notes](https://github

## Databricks Support

Spark NLP 4.4.2 has been tested and is compatible with the following runtimes:
Spark NLP 4.4.3 has been tested and is compatible with the following runtimes:

**CPU:**

Expand Down Expand Up @@ -322,7 +322,7 @@ runtimes supporting CUDA 11 are 9.x and above as listed under GPU.

## EMR Support

Spark NLP 4.4.2 has been tested and is compatible with the following EMR releases:
Spark NLP 4.4.3 has been tested and is compatible with the following EMR releases:

- emr-6.2.0
- emr-6.3.0
Expand Down Expand Up @@ -365,11 +365,11 @@ Spark NLP supports all major releases of Apache Spark 3.0.x, Apache Spark 3.1.x,
```sh
# CPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```

The `spark-nlp` has been published to
Expand All @@ -378,11 +378,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# GPU

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-gpu_2.12:4.4.3

```

Expand All @@ -392,11 +392,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# AArch64

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-aarch64_2.12:4.4.3

```

Expand All @@ -406,11 +406,11 @@ the [Maven Repository](https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/s
```sh
# M1/M2 (Apple Silicon)

spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.2
spark-shell --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3

pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3

spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.2
spark-submit --packages com.johnsnowlabs.nlp:spark-nlp-silicon_2.12:4.4.3

```

Expand All @@ -424,7 +424,7 @@ set in your SparkSession:
spark-shell \
--driver-memory 16g \
--conf spark.kryoserializer.buffer.max=2000M \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```

## Scala
Expand All @@ -442,7 +442,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp_2.12</artifactId>
<version>4.4.2</version>
<version>4.4.3</version>
</dependency>
```

Expand All @@ -453,7 +453,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-gpu_2.12</artifactId>
<version>4.4.2</version>
<version>4.4.3</version>
</dependency>
```

Expand All @@ -464,7 +464,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-aarch64_2.12</artifactId>
<version>4.4.2</version>
<version>4.4.3</version>
</dependency>
```

Expand All @@ -475,7 +475,7 @@ coordinates:
<dependency>
<groupId>com.johnsnowlabs.nlp</groupId>
<artifactId>spark-nlp-silicon_2.12</artifactId>
<version>4.4.2</version>
<version>4.4.3</version>
</dependency>
```

Expand All @@ -485,28 +485,28 @@ coordinates:

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.4.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "4.4.3"
```

**spark-nlp-gpu:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-gpu
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.4.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-gpu" % "4.4.3"
```

**spark-nlp-aarch64:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-aarch64
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.4.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-aarch64" % "4.4.3"
```

**spark-nlp-silicon:**

```sbtshell
// https://mvnrepository.com/artifact/com.johnsnowlabs.nlp/spark-nlp-silicon
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.4.2"
libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp-silicon" % "4.4.3"
```

Maven
Expand All @@ -528,7 +528,7 @@ If you installed pyspark through pip/conda, you can install `spark-nlp` through
Pip:

```bash
pip install spark-nlp==4.4.2
pip install spark-nlp==4.4.3
```

Conda:
Expand Down Expand Up @@ -557,7 +557,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3")
.getOrCreate()
```

Expand Down Expand Up @@ -628,7 +628,7 @@ Use either one of the following options
- Add the following Maven Coordinates to the interpreter's library list

```bash
com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```

- Add a path to pre-built jar from [here](#compiled-jars) in the interpreter's library list making sure the jar is
Expand All @@ -639,7 +639,7 @@ com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
Apart from the previous step, install the python module through pip

```bash
pip install spark-nlp==4.4.2
pip install spark-nlp==4.4.3
```

Or you can install `spark-nlp` from inside Zeppelin by using Conda:
Expand Down Expand Up @@ -667,7 +667,7 @@ launch the Jupyter from the same Python environment:
$ conda create -n sparknlp python=3.8 -y
$ conda activate sparknlp
# spark-nlp by default is based on pyspark 3.x
$ pip install spark-nlp==4.4.2 pyspark==3.3.1 jupyter
$ pip install spark-nlp==4.4.3 pyspark==3.3.1 jupyter
$ jupyter notebook
```

Expand All @@ -684,7 +684,7 @@ export PYSPARK_PYTHON=python3
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
pyspark --packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```

Alternatively, you can mix in using `--jars` option for pyspark + `pip install spark-nlp`
Expand All @@ -711,7 +711,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Google Colab for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.2
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.3
```

[Spark NLP quick start on Google Colab](https://colab.research.google.com/github/JohnSnowLabs/spark-nlp/blob/master/examples/python/quick_start_google_colab.ipynb)
Expand All @@ -734,7 +734,7 @@ This script comes with the two options to define `pyspark` and `spark-nlp` versi
# -s is for spark-nlp
# -g will enable upgrading libcudnn8 to 8.1.0 on Kaggle for GPU usage
# by default they are set to the latest
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.2
!wget https://setup.johnsnowlabs.com/colab.sh -O - | bash /dev/stdin -p 3.2.3 -s 4.4.3
```

[Spark NLP quick start on Kaggle Kernel](https://www.kaggle.com/mozzie/spark-nlp-named-entity-recognition) is a live
Expand All @@ -753,9 +753,9 @@ demo on Kaggle Kernel that performs named entity recognitions by using Spark NLP

3. In `Libraries` tab inside your cluster you need to follow these steps:

3.1. Install New -> PyPI -> `spark-nlp==4.4.2` -> Install
3.1. Install New -> PyPI -> `spark-nlp==4.4.3` -> Install

3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2` -> Install
3.2. Install New -> Maven -> Coordinates -> `com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3` -> Install

4. Now you can attach your notebook to the cluster and use Spark NLP!

Expand Down Expand Up @@ -806,7 +806,7 @@ A sample of your software configuration in JSON on S3 (must be public access):
"spark.kryoserializer.buffer.max": "2000M",
"spark.serializer": "org.apache.spark.serializer.KryoSerializer",
"spark.driver.maxResultSize": "0",
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2"
"spark.jars.packages": "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3"
}
}]
```
Expand All @@ -815,7 +815,7 @@ A sample of AWS CLI to launch EMR cluster:
```.sh
aws emr create-cluster \
--name "Spark NLP 4.4.2" \
--name "Spark NLP 4.4.3" \
--release-label emr-6.2.0 \
--applications Name=Hadoop Name=Spark Name=Hive \
--instance-type m4.4xlarge \
Expand Down Expand Up @@ -879,7 +879,7 @@ gcloud dataproc clusters create ${CLUSTER_NAME} \
--enable-component-gateway \
--metadata 'PIP_PACKAGES=spark-nlp spark-nlp-display google-cloud-bigquery google-cloud-storage' \
--initialization-actions gs://goog-dataproc-initialization-actions-${REGION}/python/pip-install.sh \
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
--properties spark:spark.serializer=org.apache.spark.serializer.KryoSerializer,spark:spark.driver.maxResultSize=0,spark:spark.kryoserializer.buffer.max=2000M,spark:spark.jars.packages=com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```
2. On an existing one, you need to install spark-nlp and spark-nlp-display packages from PyPI.
Expand Down Expand Up @@ -918,7 +918,7 @@ spark = SparkSession.builder
.config("spark.kryoserializer.buffer.max", "2000m")
.config("spark.jsl.settings.pretrained.cache_folder", "sample_data/pretrained")
.config("spark.jsl.settings.storage.cluster_tmp_dir", "sample_data/storage")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2")
.config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3")
.getOrCreate()
```
Expand All @@ -932,7 +932,7 @@ spark-shell \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```
**pyspark:**
Expand All @@ -945,7 +945,7 @@ pyspark \
--conf spark.kryoserializer.buffer.max=2000M \
--conf spark.jsl.settings.pretrained.cache_folder="sample_data/pretrained" \
--conf spark.jsl.settings.storage.cluster_tmp_dir="sample_data/storage" \
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.2
--packages com.johnsnowlabs.nlp:spark-nlp_2.12:4.4.3
```
**Databricks:**
Expand Down Expand Up @@ -1217,7 +1217,7 @@ spark = SparkSession.builder
.config("spark.driver.memory", "16G")
.config("spark.driver.maxResultSize", "0")
.config("spark.kryoserializer.buffer.max", "2000M")
.config("spark.jars", "/tmp/spark-nlp-assembly-4.4.2.jar")
.config("spark.jars", "/tmp/spark-nlp-assembly-4.4.3.jar")
.getOrCreate()
```
Expand All @@ -1226,7 +1226,7 @@ spark = SparkSession.builder
version (3.0.x, 3.1.x, 3.2.x, 3.3.x, and 3.4.x)
- If you are local, you can load the Fat JAR from your local FileSystem, however, if you are in a cluster setup you need
to put the Fat JAR on a distributed FileSystem such as HDFS, DBFS, S3, etc. (
i.e., `hdfs:///tmp/spark-nlp-assembly-4.4.2.jar`)
i.e., `hdfs:///tmp/spark-nlp-assembly-4.4.3.jar`)
Example of using pretrained Models and Pipelines in offline:
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ name := getPackageName(is_silicon, is_gpu, is_aarch64)

organization := "com.johnsnowlabs.nlp"

version := "4.4.2"
version := "4.4.3"

(ThisBuild / scalaVersion) := scalaVer

Expand Down
8 changes: 4 additions & 4 deletions docs/api/com/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,9 @@
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no" />
<title>Spark NLP 4.4.2 ScalaDoc - com</title>
<meta name="description" content="Spark NLP 4.4.2 ScalaDoc - com" />
<meta name="keywords" content="Spark NLP 4.4.2 ScalaDoc com" />
<title>Spark NLP 4.4.3 ScalaDoc - com</title>
<meta name="description" content="Spark NLP 4.4.3 ScalaDoc - com" />
<meta name="keywords" content="Spark NLP 4.4.3 ScalaDoc com" />
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />


Expand All @@ -28,7 +28,7 @@
</head>
<body>
<div id="search">
<span id="doc-title">Spark NLP 4.4.2 ScalaDoc<span id="doc-version"></span></span>
<span id="doc-title">Spark NLP 4.4.3 ScalaDoc<span id="doc-version"></span></span>
<span class="close-results"><span class="left">&lt;</span> Back</span>
<div id="textfilter">
<span class="input">
Expand Down
Loading

0 comments on commit 6ae3a2b

Please sign in to comment.