Skip to content

JingfeiHuang/DGCNN-Paddle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DGCNN Paddle Version

Original paper: Dynamic Graph CNN for Learning on Point Clouds

Dataset: ShapeNet

Original Pytorch Implementation: DGCNN-Pytorch

Introduction

This repository contains a Paddle implementation of DGCNN in the paper "Dynamic Graph CNN for Learning on Point Clouds". Our code is based on PaddlePaddle 2.2.0, so you need to install paddlepaddle first.

We provide our trained model and put it in the folder 'pretrained'.

Getting Started

  • Run the training script:
python main.py --exp_name=dgcnn_1024 --model=dgcnn --num_points=1024 --k=20 --use_sgd=True
python main.py --exp_name=dgcnn_2048 --model=dgcnn --num_points=2048 --k=40 --use_sgd=True
  • Run the evaluation script after training finished:
python main.py --exp_name=dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=checkpoints/dgcnn_1024/models/model.pdparams
python main.py --exp_name=dgcnn_2048_eval --model=dgcnn --num_points=2048 --k=40 --use_sgd=True --eval=True --model_path=checkpoints/dgcnn_2048/models/model.pdparams
  • Run the evaluation script with pretrained models:
python main.py --exp_name=dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=pretrained/model.pdparams

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages