Original paper: Dynamic Graph CNN for Learning on Point Clouds
Dataset: ShapeNet
Original Pytorch Implementation: DGCNN-Pytorch
This repository contains a Paddle implementation of DGCNN in the paper "Dynamic Graph CNN for Learning on Point Clouds". Our code is based on PaddlePaddle 2.2.0, so you need to install paddlepaddle first.
We provide our trained model and put it in the folder 'pretrained'.
- Run the training script:
python main.py --exp_name=dgcnn_1024 --model=dgcnn --num_points=1024 --k=20 --use_sgd=True
python main.py --exp_name=dgcnn_2048 --model=dgcnn --num_points=2048 --k=40 --use_sgd=True
- Run the evaluation script after training finished:
python main.py --exp_name=dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=checkpoints/dgcnn_1024/models/model.pdparams
python main.py --exp_name=dgcnn_2048_eval --model=dgcnn --num_points=2048 --k=40 --use_sgd=True --eval=True --model_path=checkpoints/dgcnn_2048/models/model.pdparams
- Run the evaluation script with pretrained models:
python main.py --exp_name=dgcnn_1024_eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=pretrained/model.pdparams