Skip to content
/ ggdcm Public

ggdcm: An R Package for visualizing measurement and structural model of Diagnostic Classification Modeling

Notifications You must be signed in to change notification settings

JihongZ/ggdcm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
JihongZ
Jun 27, 2020
3e0dfe6 · Jun 27, 2020

History

6 Commits
Jun 27, 2020
Jun 27, 2020
Jun 27, 2020
Jun 9, 2020
Jun 27, 2020
Jun 27, 2020
Jun 27, 2020
Jun 27, 2020
Jun 9, 2020

Repository files navigation

ggdcm

Lifecycle: experimental

Usage

library(ggdcm)
#> Loading required package: ggplot2
library(tidyverse)
#> ── Attaching packages ─────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
#> ✓ tibble  3.0.1     ✓ dplyr   1.0.0
#> ✓ tidyr   1.1.0     ✓ stringr 1.4.0
#> ✓ readr   1.3.1     ✓ forcats 0.5.0
#> ✓ purrr   0.3.4
#> ── Conflicts ────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag()    masks stats::lag()
library(dagitty)
library(ggdag)
#> 
#> Attaching package: 'ggdag'
#> The following object is masked from 'package:stats':
#> 
#>     filter
dag.dcm  <- dagify(
 x1 ~ Attr1 + Attr2,
 x2 ~ Attr1,
 x3 ~ Attr1 + Attr2,
 x4 ~ Attr2 + Attr1,
 x5 ~ Attr2,
 x6 ~ Attr2 + Attr1,
 x7 ~ Attr2,
 labels = c(Attr1 = "Multiplication", Attr2 = "Minus")
)
ggdcm(.tdy_dag = dag.dcm, use_labels = "label", int.vars = paste0("x", 1:7))
#> Latent Variables' Names Automate Generated!

dtmrSyntax = dagify(
I1 ~ RU,
I2 ~ APP,
I3 ~ PI,
I4 ~ RU,
I5 ~ RU,
I6 ~ PI,
I7 ~ RU,
I8a ~ APP,
I8b ~ APP,
I8c ~ APP,
I9 ~ RU,
I10a ~ MC,
I10b ~ RU + MC,
I10c ~ RU + MC,
I11 ~ RU,
I12 ~ RU,
I13 ~ PI + MC,
I14 ~ RU + MC,
I15a ~ PI + MC,
I15b ~ PI,
I15c ~ PI,
I16 ~ RU,
I17 ~ PI,
I18 ~ RU + PI,
I21 ~ RU,
I22 ~ RU + PI

)

int.varsname <- c( "I1", "I2", "I3", "I4", "I5", "I6", "I7", "I8a", "I8b", "I8c", "I9", "I10a", "I10b", "I10c", "I11", "I12", "I13", "I14", "I15a", "I15b", "I15c", "I16", "I17", "I18", "I21", "I22" )

ggdcm(.tdy_dag = dtmrSyntax, int.vars = int.varsname)
#> Latent Variables' Names Automate Generated!

About

ggdcm: An R Package for visualizing measurement and structural model of Diagnostic Classification Modeling

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages