Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Clean up intro to kernels notebook #432

Merged
merged 3 commits into from
Jan 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
70 changes: 18 additions & 52 deletions docs/examples/intro_to_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ def forrester(x: Float[Array, "N"]) -> Float[Array, "N"]:
return (6 * x - 2) ** 2 * jnp.sin(12 * x - 4)


n = 5
n = 13

training_x = jr.uniform(key=key, minval=0, maxval=1, shape=(n,)).reshape(-1, 1)
training_y = forrester(training_x)
Expand Down Expand Up @@ -235,6 +235,8 @@ def forrester(x: Float[Array, "N"]) -> Float[Array, "N"]:
negative_mll = gpx.objectives.ConjugateMLL(negative=True)
negative_mll(no_opt_posterior, train_data=D)


# %%
opt_posterior, history = gpx.fit_scipy(
model=no_opt_posterior,
objective=negative_mll,
Expand All @@ -247,6 +249,17 @@ def forrester(x: Float[Array, "N"]) -> Float[Array, "N"]:
# with the optimised hyperparameters, and compare them to the predictions made using the
# posterior with the default hyperparameters:

# %%
def plot_ribbon(ax, x, dist, color):
mean = dist.mean()
std = dist.stddev()
ax.plot(x, mean, label="Predictive mean", color=color)
ax.fill_between(x.squeeze(), mean - 2 * std, mean + 2 * std, alpha=0.2, label="Two sigma", color=color)
ax.plot(x, mean - 2 * std, linestyle="--", linewidth=1, color=color)
ax.plot(x, mean + 2 * std, linestyle="--", linewidth=1, color=color)



# %%
opt_latent_dist = opt_posterior.predict(test_x, train_data=D)
opt_predictive_dist = opt_posterior.likelihood(opt_latent_dist)
Expand All @@ -255,69 +268,22 @@ def forrester(x: Float[Array, "N"]) -> Float[Array, "N"]:
opt_predictive_std = opt_predictive_dist.stddev()

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(5, 6))
ax1.plot(training_x, training_y, "x", label="Observations", color=cols[0], alpha=0.5)
ax1.fill_between(
test_x.squeeze(),
opt_predictive_mean - 2 * opt_predictive_std,
opt_predictive_mean + 2 * opt_predictive_std,
alpha=0.2,
label="Two sigma",
color=cols[1],
)
ax1.plot(
test_x,
opt_predictive_mean - 2 * opt_predictive_std,
linestyle="--",
linewidth=1,
color=cols[1],
)
ax1.plot(
test_x,
opt_predictive_mean + 2 * opt_predictive_std,
linestyle="--",
linewidth=1,
color=cols[1],
)
ax1.plot(
test_x, test_y, label="Latent function", color=cols[0], linestyle="--", linewidth=2
)
ax1.plot(test_x, opt_predictive_mean, label="Predictive mean", color=cols[1])
ax1.plot(training_x, training_y, "x", label="Observations", color="k", zorder=5)
plot_ribbon(ax1, test_x, opt_predictive_dist, color=cols[1])
ax1.set_title("Posterior with Hyperparameter Optimisation")
ax1.legend(loc="center left", bbox_to_anchor=(0.975, 0.5))

no_opt_latent_dist = no_opt_posterior.predict(test_x, train_data=D)
no_opt_predictive_dist = no_opt_posterior.likelihood(no_opt_latent_dist)

no_opt_predictive_mean = no_opt_predictive_dist.mean()
no_opt_predictive_std = no_opt_predictive_dist.stddev()

ax2.plot(training_x, training_y, "x", label="Observations", color=cols[0], alpha=0.5)
ax2.fill_between(
test_x.squeeze(),
no_opt_predictive_mean - 2 * no_opt_predictive_std,
no_opt_predictive_mean + 2 * no_opt_predictive_std,
alpha=0.2,
label="Two sigma",
color=cols[1],
)
ax2.plot(
test_x,
no_opt_predictive_mean - 2 * no_opt_predictive_std,
linestyle="--",
linewidth=1,
color=cols[1],
)
ax2.plot(
test_x,
no_opt_predictive_mean + 2 * no_opt_predictive_std,
linestyle="--",
linewidth=1,
color=cols[1],
)
ax2.plot(
test_x, test_y, label="Latent function", color=cols[0], linestyle="--", linewidth=2
)
ax2.plot(test_x, no_opt_predictive_mean, label="Predictive mean", color=cols[1])
ax2.plot(training_x, training_y, "x", label="Observations", color="k", zorder=5)
plot_ribbon(ax2, test_x, no_opt_predictive_dist, color=cols[1])
ax2.set_title("Posterior without Hyperparameter Optimisation")
ax2.legend(loc="center left", bbox_to_anchor=(0.975, 0.5))

Expand Down
Loading