This repo contains the code for the HIC-YOLOv5, the original paper is:
HIC-YOLOv5: Improved YOLOv5 For Small Object Detection
Shiyi Tang, Fang Yini, Shu Zhang
[Paper]
Run pip install -r requirements.txt
in terminal.
(a) You can download the dataset from https://github.com/VisDrone/VisDrone-Dataset#task-1-object-detection-in-images.
(b) Convert data form to Yolo by running visDrone2yolov5.py
(you may need to change the dir
).
We suppose the data directory is constructed as
Your project name
├── datasets
| ├── VisDrone2019
| | └── VisDrone2019-DET-train
└── annotations
└── images
└── labels
| | └── VisDrone2019-DET-val
└── annotations
└── images
└── labels
| | └── VisDrone2019-DET-test-dev
└── annotations
└── images
└── labels
├── yolov5-6.0
(c) Modify path args in data/VisDrone.yaml
.
Modify args in train.py
. In HIC-Yolov5, some args are set as follows:
--weights
:yolov5s.pt
-cfg
:models/yolov5s-p2-involution-cbam.yaml
--hyp
:data/hyps/hyp.scratch-high.yaml
Modify args in val.py
.
--weights
: thebest.pt
file in your result folder.--task
: can beval
ortest
.
If you find this work useful in your research, please cite the paper:
@misc{tang2023hicyolov5,
title={HIC-YOLOv5: Improved YOLOv5 For Small Object Detection},
author={Shiyi Tang and Yini Fang and Shu Zhang},
year={2023},
eprint={2309.16393},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
My email: st2015@hw.ac.uk