Experience the future of confidential conversations with self-hosted AI models running entirely on your device
A private, free, offline-first chat application powered by Open Source AI models like DeepSeek, Llama, Mistral, etc. through Ollama.
- Full conversation history
- Image upload support for vision models (LLaVA, Llama3.2-Vision)
- Model parameter controls
- Ollama-powered local AI processing
- Multi-LLM support (DeepSeek, Llama 2, Mistral, etc.)
- Markdown support
- System prompt engineering
- Secure offline storage
- Open source model ecosystem
Frontend: HTML5, CSS3, Vanilla JavaScript
Backend: FastAPI, Ollama Python Client
AI Engine: Ollama (Free & Open Source)
- Local model deployment & management
- Cross-platform support (Linux/macOS/Windows)
- Community-driven model library (Llama 2, Mistral, etc.)
- Efficient CPU/GPU resource utilization
Powered By: DeepSeek-R1
graph LR
A[Beautiful UI] --> B[Vanilla JS]
B --> C{FastAPI}
C --> D[(Ollama Engine)]
D --> E[Local Models]
E --> F[CPU/GPU Optimized]
Model Family | Example Sizes | Specialization |
---|---|---|
Vision Models | 7B, 13B, 34B | Image understanding |
DeepSeek | 7B, 33B | General purpose, coding |
Llama 3 | 8B, 70B | General reasoning |
LLaVA | 7B, 13B | Multimodal vision |
Llama3.2-Vision | 8B | Image-to-text |
❗ Important Note: Image upload functionality only works with vision-capable models like:
llava:7b
- Large Language and Vision Assistantllama3.2-vision
- Llama3-based visual understandingllava-llama3
- LLaVA implementation for Llama3
❗ System Requirements Note
- 7B models: Minimum 8GB RAM (16GB recommended)
- 13B models: Minimum 16GB RAM (32GB recommended)
- 33B+ models: 32GB+ RAM required
Note: Insufficient memory may cause slow performance or model failures
Follow platform-specific instructions:
curl -fsSL https://ollama.com/install.sh | sh
or
Download installer from ollama.com/download/Ollama-darwin.zip
Download installer from ollama.com/download/OllamaSetup.exe
curl -fsSL https://ollama.ai/install.sh | sh
2.1. Start Ollama Service:
ollama serve
# Optional: Pull models - for faster startup. Note You can also download models from chat.html
ollama pull deepseek-r1 # 33B parameter model
ollama pull llama2:13b # Medium-sized variant
ollama pull llava:7b # 7B parameter vision model
ollama pull llama3.2-vision # Official Llama3 vision variant
ollama pull llava-llama3:8b # Llama3-based LLaVA implementation
2.2. Install Python Dependencies:
pip install -r backend/requirements.txt
2.3. Start FastAPI Server:
cd backend
uvicorn main:app --reload --port 3000
# Navigate to frontend directory
cd frontend
# Serve via local HTTP server on port 8000
python3 -m http.server 8000 --bind 127.0.0.1
# Now access at: http://localhost:8000/chat.html
Method | Command | When to Use |
---|---|---|
Local Server (Recommended) | python3 -m http.server 8000 |
Offline access |
Direct File | open chat.html |
(Requires Internet Access in case of file access) |
❗ Critical Offline Note:
For complete offline functionality:
- First download models while online using the interface
- All services must run on localhost:
- Ollama:
ollama serve
- Backend:
uvicorn main:app --port 3000
- Frontend:
python3 -m http.server 8000
- Ollama:
- Access via
http://localhost:8000/chat.html
neverfile://
sequenceDiagram
participant User
participant Frontend
participant Backend
participant Ollama
User->>Frontend: http://localhost:8000
Frontend->>Backend: API Calls (localhost:3000)
Backend->>Ollama: Model Requests (localhost:11434)
Ollama-->>Backend: AI Responses
Backend-->>Frontend: Processed Data
Frontend-->>User: Rendered Interface
project-root/
├── frontend/
│ ├── chat.html # Main interface
│ ├── app.js # Client-side logic
│ └── styles.css # Styling
└── backend/
├── main.py # FastAPI server
└── requirements.txt # Python dependencies
📜 Full Documentation
Explore our API Doc for:
- Advanced model configurations
- Vision pipeline architecture
- Local deployment guides
- Plugin development tutorials
- 📸 Multi-image conversations (JPG/PNG/GIF)
- 🔍 Zoomable previews with pinch-to-zoom
- 🧠 Vision model integration
- 📦 Local image processing (no cloud uploads)
llava:7b
, llama3.2-vision
, llava-llama3:8b
Capabilities:
- Upload multiple images per message (JPG/PNG)
- Images are processed locally using vision models
- Combined text+image understanding
- Image previews with zoom functionality
Requirements:
- Must use a vision-capable model
- Images under 5MB recommended
- Supported formats: JPEG, PNG, GIF
Disclaimer:
🔍 Vision capabilities require specific model architectures - regular LLMs cannot process images even if attached.
- Special thanks to MK.
- Ollama integration (Apache 2.0 License) for private AI processing
- UI design influenced by modern chat applications
We champion responsible AI - all models are open-source and locally hosted.
No hidden trackers, no data harvesting, just pure AI innovation.
AGPL-3.0
🔗 Powered By
Ollama • DeepSeek-R1 • FastAPI
Service | Port | Purpose |
---|---|---|
Frontend | 8000 | Web interface |
Backend | 3000 | FastAPI server |
Ollama | 11434 | Model inference & management |