Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix bug when loading few columns of a dataset with many primary indices #446

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,13 @@
Changelog
=========


Kartothek 4.0.2 (2021-04-xx)
============================

* Fix a bug in ``MetaPartition._reconstruct_index_columns`` that would raise an ``IndexError`` when loading few columns of a dataset with many primary indices.


Kartothek 4.0.1 (2021-04-13)
============================

Expand Down
4 changes: 3 additions & 1 deletion kartothek/io_components/metapartition.py
Original file line number Diff line number Diff line change
Expand Up @@ -767,7 +767,8 @@ def _reconstruct_index_columns(
# indexer call is slow, so only do that if really necessary
df = df.reindex(columns=cleaned_original_columns, copy=False)

for pos, (primary_key, value) in enumerate(key_indices):
pos = 0
for primary_key, value in key_indices:
# If there are predicates, don't reconstruct the index if it wasn't requested
if columns is not None and primary_key not in columns:
continue
Expand Down Expand Up @@ -801,6 +802,7 @@ def _reconstruct_index_columns(
if convert_to_date:
value = pd.Timestamp(value).to_pydatetime().date()
df.insert(pos, primary_key, value)
pos += 1

return df

Expand Down
18 changes: 16 additions & 2 deletions tests/io_components/test_metapartition.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ def test_store_single_dataframe_as_partition(store, metadata_version):
mp = MetaPartition(label="test_label", data=df, metadata_version=metadata_version)

meta_partition = mp.store_dataframes(
store=store, df_serializer=ParquetSerializer(), dataset_uuid="dataset_uuid",
store=store, df_serializer=ParquetSerializer(), dataset_uuid="dataset_uuid"
)

assert meta_partition.data is None
Expand Down Expand Up @@ -58,7 +58,7 @@ def test_load_dataframe_logical_conjunction(store, metadata_version):
logical_conjunction=[("P", ">", 4)],
)
meta_partition = mp.store_dataframes(
store=store, df_serializer=None, dataset_uuid="dataset_uuid",
store=store, df_serializer=None, dataset_uuid="dataset_uuid"
)
predicates = None
loaded_mp = meta_partition.load_dataframes(store=store, predicates=predicates)
Expand Down Expand Up @@ -1333,6 +1333,20 @@ def test_get_parquet_metadata_row_group_size(store):
pd.testing.assert_frame_equal(actual, expected)


def test__reconstruct_index_columns():
df = pd.DataFrame({"x": [0], "a": [-1], "b": [-2], "c": [-3]})
mp = MetaPartition(label="test_label", data=df)
df_with_index_columns = mp._reconstruct_index_columns(
df=df[["x"]],
key_indices=[("a", 1), ("b", 2), ("c", 3)],
columns=["x", "c"],
categories=None,
date_as_object=False,
)
# Index columns first
pdt.assert_frame_equal(df_with_index_columns, pd.DataFrame({"c": [3], "x": [0]}))


def test_partition_on_keeps_table_name():
mp = MetaPartition(
label="label_1",
Expand Down