Skip to content
/ HO-Cap Public

A Python package that provides evaluation and visualization tools for the HOCap dataset

License

Notifications You must be signed in to change notification settings

IRVLUTD/HO-Cap

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HOCap Toolkit

Python 3.10 PyTorch 2.3.1 CUDA 11.8 ROS Melodic GPLv3.0 License

The HOCap Toolkit is a Python package that provides evaluation and visualization tools for the HO-Cap dataset.


HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction

Jikai Wang, Qifan Zhang, Yu-Wei Chao, Bowen Wen, Xiaohu Guo, Yu Xiang

[ arXiv ] [ Project page ]

hocap-demo-video


Contents

News

  • 2024-12-15: The training codes and datasets for YOLO11 and RT-DETR are added! Please check the here.
  • 2024-12-15: The Object Collection dataset is added! Please check the project page for more details.
  • 2024-12-14: The Object Collection dataset is added! Please check the project page for more details.
  • 2024-12-14: The HO-Cap dataset is updated! Please check the project page for more details.
  • 2024-06-24: The HO-Cap dataset is released! Please check the project page for more details.

BibTeX Citation

If HO-Cap helps your research, please consider citing the following:

@misc{wang2024hocapcapturedataset3d,
      title={HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction},
      author={Jikai Wang and Qifan Zhang and Yu-Wei Chao and Bowen Wen and Xiaohu Guo and Yu Xiang},
      year={2024},
      eprint={2406.06843},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2406.06843},
}

License

HOCap Toolkit is released under the GNU General Public License v3.0.

Installation

This code is tested with Python 3.10 and CUDA 11.8 on Ubuntu 20.04. Make sure CUDA 11.8 is installed on your system before running the code.

  1. Clone the HO-Cap repository from GitHub.

    git clone https://github.com/IRVLUTD/HO-Cap.git
  2. Change the current directory to the cloned repository.

    cd HO-Cap
  3. Create conda environment

    conda create -n hocap-toolkit python=3.10
  4. Activate conda environment

    conda activate hocap-toolkit
  5. Install Pytorch and torchvision

    python -m pip install torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118 --no-cache-dir
  6. Install hocap-toolkit package.

    python -m pip install -e .
  7. Download MANO models and code (mano_v1_2.zip) from the MANO website and place the extracted .pkl files under config/mano_models directory. The directory should look like this:

    ./config/mano_models
    ├── MANO_LEFT.pkl
    └── MANO_RIGHT.pkl
    

Download the HOCap Dataset

  1. Run below code to download the whole dataset:

    python tools/hocap_downloader.py --subject_id all
    
  2. Or you can download the dataset for a specific subject:

    python tools/hocap_downloader.py --subject_id subject_1
    
  3. The downloaded .zip files will be extracted to the ./datasets directory. And the directory should look like this:

    ./datasets
    ├── calibration
    ├── models
    ├── subject_1
    │   ├── 20231025_165502
    │   │   ├── 037522251142
    │   │   │   ├── color_000000.jpg
    │   │   │   ├── depth_000000.png
    │   │   │   ├── label_000000.npz
    │   │   │   └── ...
    │   │   ├── 043422252387
    │   │   ├── ...
    │   │   ├── hololens_kv5h72
    │   │   ├── meta.yaml
    │   │   ├── poses_m.npy
    │   │   ├── poses_o.npy
    │   │   └── poses_pv.npy
    │   ├── 20231025_165502
    │   └── ...
    ├── ...
    └── subject_9

Labels in the HOCap Dataset

The HOCap dataset provides the following labels:

  • 3d hand keypoints
  • 2d hand keypoints
  • hand bounding boxes
  • hand sides
  • hand MANO poses
  • object 6OD poses
  • segmentation masks

vis_labels

Loading Dataset and Visualizing Samples

  1. Below example shows how to visualize the pose annotations of one frame:

    python examples/sequence_pose_viewer.py

    sequence_pose_viewer

  2. Below example shows how to visualize sequence by the interactive 3D viewer:

    python examples/sequence_3d_viewer.py

    sequence_3d_viewer

    The 3D viewer provides the following functionalities:

    • Background: change the background color.
    • Point Size: change the point size.
    • Show Skybox: display/hide the skybox.
    • Show Axes: display/hide the axes of world coordinate.
    • Crop Points: crop the points outside the table area.
    • Point Clouds: display/hide the point clouds.
    • Hand Mesh: display/hide the hand mesh.
    • Object Mesh: display/hide the object mesh.
    • Frame Slider: change the frame index.
    • Reset: reset the camera view and the frame index.
    • Pause/Play: pause/play the sequence.
    • Exit: close the viewer.
    • Help Tab: show the help information.
  3. Below example shows how to offline render the sequence:

    python examples/sequence_renderer.py

    This will render the color image and segmentation map for all the frames in the sequence. The rendered images will be saved in the <sequence_folder>/renders/ directory.

    sequence_renderer_color sequence_renderer_mask

Evaluation

HO-Cap provides the benchmark evaluation for three tasks:

  • Hand Pose Estimation (HPE) (A2J-Transformer1 and HaMeR2)
  • Object Pose Estimation (OPE) (MegaPose3 and FoundationPose4)
  • Object Detection (ODET) (CNOS5, GroundingDINO6, YOLO117 and RT-DETR8).

Run below code to download the example evaluation results:

python config/benchmarks/benchmark_downloader.py

If the evaluation results are saved in the same format, the evaluation codes below can be used to evaluate the results.

Hand Pose Estimation Evaluation

  • Evaluate the hand pose estimation performance:

    python examples/evaluate_hand_pose.py
    You should see the following output:
    PCK (0.05)  PCK (0.10)  PCK (0.15)  PCK (0.20)  MPJPE (mm)
     45.319048   81.247619   91.357143   95.080952   25.657379
    

Object Pose Estimation Evaluation

  • Evaluate the novel object pose estimation performance:

    python examples/evaluate_object_pose.py
    You should see the following output:
          Object_ID  ADD-S_err (cm)    ADD_err (cm)   ADD-S_AUC (%)     ADD_AUC (%)
    |-------------- |-------------- |-------------- |-------------- |-------------- |
              G01_1            0.42            0.72           95.79           92.82
              G01_2            0.37            0.69           96.39           93.38
              G01_3            0.45            0.82           95.72           92.08
              G01_4            0.61            2.73           94.14           74.19
            Average            0.46            1.24           95.43           88.04
    

Object Detection Evaluation

  • Evaluate the object detection performance:

    python examples/evaluate_object_detection.py
    You should see the following output: (click to expand)
    Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.016
    Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.023
    Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.018
    Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002
    Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.018
    Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.036
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.036
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.036
    Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.005
    Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037
    Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.017
    AP: 0.016 | AP_50: 0.023 | AP_75: 0.018 | AP_s: 0.002 | AP_m: 0.018 | AP_l: 0.014
    

HOCap Dataset Split for Training and Testing

The train/valid/test split is defined separately for each task (HPE, ODET, OPE) by files config/hocap_hpt.json, config/hocap_odt.json, and config/hocap_ope.json. Each configuration file has the following structure:

{
  "train": [[0, 0, 0, 0], ...],
  "valid": [...],
  "test": [...]
}

Each item is in format [subject_index, sequence_index, camera_index, frame_index]. For example, [0, 0, 0, 0] refers to subject_1/20231022_190534/105322251564 folder and frame color_000000.jpg/ depth_000000.png.

To save time, we provide the pre-defined splits for each task, the split datasets could be downloaded here.

Or run below code to split the HOCap dataset manually, the split dataset will be saved in the ./datasets directory.

  • Hand Pose Estimation (HPE) task:

    python tools/hocap_dataset_split.py --task hpe
  • Object Pose Estimation (OPE) task:

    python tools/hocap_dataset_split.py --task ope
  • Object Detection (ODET) task:

    • COCO annotation type:
      python tools/hocap_dataset_split.py --task odet --anno_type coco
    • YOLO annotation type:
      python tools/hocap_dataset_split.py --task odet --anno_type yolo

Footnotes

  1. A2J-Transformer: Anchor-to-Joint Transformer Network for 3D Interacting Hand Pose Estimation from a Single RGB Image

  2. Reconstructing Hands in 3D with Transformers

  3. MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare

  4. FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects

  5. CNOS: A Strong Baseline for CAD-based Novel Object Segmentation

  6. Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection

  7. YOLOv11: An Overview of the Key Architectural Enhancements

  8. DETRs Beat YOLOs on Real-time Object Detection