Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added BLEU #213

Merged
merged 4 commits into from
Jul 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,9 +111,9 @@ To evaluate the performance of uncertainty estimation methods consider a quick e
```
HYDRA_CONFIG=../examples/configs/polygraph_eval_coqa.yaml python ./scripts/polygraph_eval \
dataset="coqa" \
model="databricks/dolly-v2-3b" \
model.path="databricks/dolly-v2-3b" \
save_path="./workdir/output" \
seed=[1,2,3,4,5]
"seed=[1,2,3,4,5]"
```

Use [`visualization_tables.ipynb`](https://github.com/IINemo/lm-polygraph/blob/main/notebooks/vizualization_tables.ipynb) or [`result_tables.ipynb`](https://github.com/IINemo/lm-polygraph/blob/main/notebooks/result_tables.ipynb) to generate the summarizing tables for an experiment.
Expand Down
4 changes: 3 additions & 1 deletion scripts/polygraph_eval
Original file line number Diff line number Diff line change
Expand Up @@ -352,6 +352,7 @@ def get_generation_metrics(args):
RougeMetric("rouge1"),
RougeMetric("rouge2"),
RougeMetric("rougeL"),
BLEUMetric(),
BertScoreMetric('rh'),
SbertMetric(),
AccuracyMetric(
Expand All @@ -360,8 +361,9 @@ def get_generation_metrics(args):
normalize = getattr(args, "normalize", False),
),
AlignScore(),
OpenAIFactCheck(cache_path=args.cache_path),
]
if getattr(args, "use_claim_ue", False):
result += [OpenAIFactCheck(cache_path=args.cache_path)]
if args.task == "nmt":
ignore_regex = getattr(args, "source_ignore_regex", None)
result += [Comet(source_ignore_regex = ignore_regex)]
Expand Down
1 change: 1 addition & 0 deletions src/lm_polygraph/generation_metrics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .rouge import RougeMetric
from .bleu import BLEUMetric
from .model_score import ModelScoreSeqMetric, ModelScoreTokenwiseMetric
from .bart_score import BartScoreSeqMetric
from .accuracy import AccuracyMetric
Expand Down
47 changes: 47 additions & 0 deletions src/lm_polygraph/generation_metrics/bleu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
import numpy as np
from sacrebleu.metrics import BLEU

from typing import List, Dict
from .generation_metric import GenerationMetric


class BLEUMetric(GenerationMetric):
"""
Calculates BLEU metric between model-generated texts and ground truth texts.
"""

def __init__(self):
super().__init__(["greedy_texts"], "sequence")
self.scorer = BLEU(effective_order=True, lowercase=True)

def __str__(self):
return "BLEU"

def _score_single(self, t1: str, t2: str):
return self.scorer.sentence_score(
t1.strip().rstrip("."), [t2.strip().rstrip(".")]
).score

def __call__(
self,
stats: Dict[str, np.ndarray],
target_texts: List[str],
target_tokens: List[List[int]],
) -> np.ndarray:
"""
Calculates BLEU score between stats['greedy_texts'] and target_texts.

Parameters:
stats (Dict[str, np.ndarray]): input statistics, which for multiple samples includes:
* model-generated texts in 'greedy_texts'
target_texts (List[str]): ground-truth texts
target_tokens (List[List[int]]): corresponding token splits for each target text
Returns:
np.ndarray: list of BLEU Scores for each sample in input.
"""
return np.array(
[
self._score_single(hyp, ref)
for hyp, ref in zip(stats["greedy_texts"], target_texts)
]
)
Loading