Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add parse #149

Merged
merged 3 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 0 additions & 12 deletions calphy/input.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,18 +42,6 @@

__version__ = "1.3.10"

def read_report(folder):
"""
Read the finished calculation report
"""
repfile = os.path.join(folder, "report.yaml")
if not os.path.exists(repfile):
raise FileNotFoundError(f"file {repfile} not found")

with open(repfile, 'r') as fin:
data = yaml.safe_load(fin)
return data

def _check_equal(val):
if not (val[0]==val[1]==val[2]):
return False
Expand Down
119 changes: 119 additions & 0 deletions calphy/postprocessing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
import os
import numpy as np

def read_report(folder):
"""
Read the finished calculation report

Parameters
----------
folder: string
folder from which calculation is to be read

Returns
-------
data: dict
dictionary with results

"""
repfile = os.path.join(folder, "report.yaml")
if not os.path.exists(repfile):
raise FileNotFoundError(f"file {repfile} not found")

with open(repfile, 'r') as fin:
data = yaml.safe_load(fin)
return data

def gather_results(mainfolder):
"""
Gather results from all subfolders in a given folder into a Pandas DataFrame

Parameters
----------
mainfolder: string
folder where calculations are stored

Returns
-------
df: pandas DataFrame
DataFrame with results
"""
try:
import pandas as pd
except ImportError:
raise ImportError('Please install pandas to use this function')

datadict = {}
datadict['mode'] = []
datadict['status'] = []
datadict['temperature'] = []
datadict['pressure'] = []
datadict['free_energy'] = []
datadict['reference_phase'] = []
datadict['error_code'] = []

folders = next(os.walk(mainfolder))[1]
for folder in folders:
#adjust for pyiron folder, see
if folder.split('_')[-1] == 'hdf5':
#this could be a pyiron calc
withouthdf = folder.split('_hdf5')[0]
folder = f'{folder}/{withouthdf}'

inpfile = os.path.join(mainfolder, folder, 'input_file.yaml')
#print(inpfile)
if not os.path.exists(inpfile):
continue;

#ok, valid calculation, try to parse input file to get info
with open(inpfile, 'r') as fin:
inp = yaml.safe_load(fin)
#grab the first calculation
inp = inp['calculations'][0]
#mode
mode = inp['mode']
datadict['mode'].append(mode)
datadict['temperature'].append(inp['temperature'])
datadict['pressure'].append(inp['pressure'])
datadict['reference_phase'].append(inp['reference_phase'])

#check output file
outfile = os.path.join(mainfolder, folder, 'report.yaml')
datadict['error_code'].append(None)

#print(inpfile)
if not os.path.exists(outfile):
datadict['status'].append('False')
datadict['free_energy'].append(np.NaN)
#check if error file is found
errfile = os.path.join(os.getcwd(), mainfolder, folder+'.sub.err')
if os.path.exists(errfile):
with open(errfile, 'r') as fin:
for line in fin:
if 'calphy.errors' in line:
break
try:
error_code = line.split(':')[0].split('.')[-1]
datadict['error_code'][-1] = error_code
except:
pass
continue;

if mode in ['fe', 'alchemy', 'composition_scaling']:
datadict['status'].append('True')

#ok, valid calculation, try to parse input file to get info
with open(outfile, 'r') as fin:
out = yaml.safe_load(fin)

datadict['free_energy'].append(out['results']['free_energy'])

#parse extra info
if mode in ['ts', 'tscale']:
datafile = os.path.join(os.getcwd(), folder, 'temperature_sweep.dat')
t, f = np.unpack(datafile, unpack=True, usecols=(0,1))
datadict['temperature'][-1] = t
datadict['free_energy'][-1] = f

df = pd.DataFrame(data=datadict)
return df
Loading