Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
bmtrager committed Dec 27, 2024
1 parent 20de6fd commit e660734
Showing 1 changed file with 16 additions and 22 deletions.
38 changes: 16 additions & 22 deletions coq/QLearn/jaakkola_vector.v
Original file line number Diff line number Diff line change
Expand Up @@ -7647,30 +7647,22 @@ Section qlearn.
{isfe : forall k sa, IsFiniteExpectation prts (fun ω => XF k ω sa)}
{isfe2 : forall k sa, IsFiniteExpectation prts
(rvsqr (rvminus (fun ω => XF k ω sa)
(FiniteConditionalExpectation prts (filt_sub k) (fun ω => XF k ω sa))))}
(*
{rvw : forall k sa, RandomVariable dom borel_sa (fun ω : Ts => w k ω sa)}
{iscond : forall k sa, is_conditional_expectation prts (F k) (fun ω => w k ω sa) (ConditionalExpectation prts (filt_sub k) (fun ω => w k ω sa))}
*)
:
(FiniteConditionalExpectation prts (filt_sub k) (fun ω => XF k ω sa))))} :
(forall k sa ω, 0 <= α k ω sa <= 1) ->
(forall sa ω, is_lim_seq (sum_n (fun k => α k ω sa)) p_infty) ->
(forall sa ω, ex_series (fun k : nat => Rsqr (α k ω sa))) ->

(*
(forall k sa, almostR2 prts eq (ConditionalExpectation _ (filt_sub k) (fun ω => w k ω sa)) (const 0)) ->
(exists (A B : R),
0 < A /\ 0 < B /\
forall k sa,
almostR2 prts Rbar_le (ConditionalExpectation
_ (filt_sub k)
(rvsqr (fun ω => (w k ω sa))))
(rvplus (const A)
(rvscale B (rvmaxlist
(fun j ω => Rsqr (Rmax_norm _ (X j ω)))
k)))) ->
*)
(almost prts
(fun ω =>
forall k sa,
Rabs ((FiniteConditionalExpectation _ (filt_sub k) (fun ω => XF k ω sa)) ω) <= (γ * (Rmax_norm _ (X k ω))))) ->
(exists (C : R),
(0 < C) /\
almost prts
(fun ω =>
(forall k sa,
((FiniteConditionalVariance prts (filt_sub k) (fun ω => XF k ω sa)) ω)
<= (C * (1 + Rmax_norm _ (X k ω))^2)))) ->
0 < β < 1 ->
(*
(forall k x, Rmax_norm _ (Rfct_minus _ (XF k x) x') <= β * Rmax_norm _ (Rfct_minus _ x x')) ->
Expand All @@ -7682,7 +7674,7 @@ Section qlearn.
forall sa,
is_lim_seq (fun n => X n ω sa) 0).
Proof.
intros abound liminf exser betalim eqq.
intros abound liminf exser exp_norm var_norm betalim eqq.
(* pose (N := length (nodup EqDecsigT fin_elms)). *)

pose (Xvec := fun t ω => our_iso_f_M (X t ω)).
Expand Down Expand Up @@ -7784,7 +7776,9 @@ Section qlearn.
{
intros.
generalize (finite_fun_vector_iso_nth_fun (XF k)); intros.
specialize (isfe2 k).
generalize (isfe2 k); intros.
generalize (IsFiniteExpectation_proper_almostR2); intros.

admit.
}
specialize (jaak isfe2x betalim).
Expand Down

0 comments on commit e660734

Please sign in to comment.