Basic Implementation (Study friendly) of DCGAN in Tensorflow
[Paper | Post(in Korean) | Pytorch Version]
- GAN: [Pytorch][Tensorflow]
- DCGAN: [Pytorch][Tensorflow]
- InfoGAN: [Pytorch][Tensorflow]
- Pix2Pix: [Pytorch][Tensorflow]
- DiscoGAN: [Pytorch][Tensorflow]
- Windows 10
- Python 3.5.3 (Anaconda)
- Tensorflow 1.4.0
- Numpy 1.13.1
- lmdb (pip install lmdb): for LSUN Dataset
- cv2 (conda install -c conda-forge opencv): for LSUN Dataset
- Image Size = 64x64 (Both in CelebA and LSUN-Bedroom)
- Batch Size = 128 (~32 is OK)
- Learning Rate = 0.0002
- Adam_beta1 = 0.5
- z_dim = 100
- Epoch = 5 in CelebA is Enough, 1 in LSUN is Enough. Sometimes it can be diverge.
You can modify hyper-parameter. Look at the parsing part of the code.
-
Database Setting: link
-
Train & Test
python train.py --filelist <filelist_name> --out_dir <output_directory>
- Test results will be saved in 'output_directory'
-
Database Setting: link
-
Train & Test
python train.py --filelist <filelist_name> --out_dir <output_directory>
- Test results will be saved in 'output_directory'
DCGAN with CelebA (6 Epochs)
DCGAN with LSUN (1 Epochs)