Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Tracking mask #41

Merged
merged 2 commits into from
Apr 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions elikopy/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -989,7 +989,7 @@ def odf_msmtcsd(self, folder_path=None, num_peaks = 2, peaks_threshold=0.25, mas
f.close()


def tracking(self, folder_path=None, streamline_number:int=100000, max_angle:int=15, cutoff:float=0.1, msmtCSD:bool=True, output_filename:str="tractogram", save_as_trk=False,
def tracking(self, folder_path=None, streamline_number:int=100000, max_angle:int=15, cutoff:float=0.1, msmtCSD:bool=True, output_filename:str="tractogram", save_as_trk=False, maskType:str="brain_mask",
slurm=None, patient_list_m=None, slurm_email=None, slurm_timeout=None, cpus=None, slurm_mem=None):
"""Computes the odf using MSMT-CSD for each subject. The outputs are available in the directories <folder_path>/subjects/<subjects_ID>/dMRI/tractography/.

Expand Down Expand Up @@ -1034,7 +1034,7 @@ def tracking(self, folder_path=None, streamline_number:int=100000, max_angle:int

if slurm:
p_job = {
"wrap": "export MKL_NUM_THREADS="+ str(core_count)+" ; export OMP_NUM_THREADS="+ str(core_count)+" ; python -c 'from elikopy.individual_subject_processing import tracking_solo; tracking_solo(\"" + folder_path + "/\",\"" + p + "\", streamline_number =" + str(streamline_number) + ", msmtCSD=" + str(msmtCSD) + ", core_count=" + str(core_count) + ", save_as_trk=" + str(save_as_trk) + ", cutoff=" + str(cutoff) + ", max_angle="+ str(max_angle) + ", output_filename= \"" + output_filename + "\"" + ")'",
"wrap": "export MKL_NUM_THREADS="+ str(core_count)+" ; export OMP_NUM_THREADS="+ str(core_count)+" ; python -c 'from elikopy.individual_subject_processing import tracking_solo; tracking_solo(\"" + folder_path + "/\",\"" + p + "\", streamline_number =" + str(streamline_number) + ", msmtCSD=" + str(msmtCSD) + ", core_count=" + str(core_count) + ", save_as_trk=" + str(save_as_trk) + ", cutoff=" + str(cutoff) + ", max_angle="+ str(max_angle) + ", maskType= \"" + maskType + "\"" + ", output_filename= \"" + output_filename + "\"" + ")'",
"job_name": "TRACKING_" + p,
"ntasks": 1,
"cpus_per_task": core_count,
Expand All @@ -1054,7 +1054,7 @@ def tracking(self, folder_path=None, streamline_number:int=100000, max_angle:int
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Patient %s is ready to be processed\n" % p)
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Successfully submited job %s using slurm\n" % p_job_id)
else:
tracking_solo(folder_path + "/", p, streamline_number=streamline_number, max_angle=max_angle, cutoff=cutoff, msmtCSD=msmtCSD, output_filename=output_filename, core_count=core_count, save_as_trk=save_as_trk)
tracking_solo(folder_path + "/", p, streamline_number=streamline_number, max_angle=max_angle, cutoff=cutoff, msmtCSD=msmtCSD, output_filename=output_filename, core_count=core_count, save_as_trk=save_as_trk, maskType=maskType)
matplotlib.pyplot.close(fig='all')
f.write("["+log_prefix+"] " + datetime.datetime.now().strftime("%d.%b %Y %H:%M:%S") + ": Successfully applied tracking_solo on patient %s\n" % p)
f.flush()
Expand Down
42 changes: 24 additions & 18 deletions elikopy/individual_subject_processing.py
Original file line number Diff line number Diff line change
Expand Up @@ -3591,7 +3591,8 @@ def print_page(self, images):

def tracking_solo(folder_path:str, p:str, streamline_number:int=100000,
max_angle:int=15, cutoff:float=0.1, msmtCSD:bool=True,
output_filename:str='tractogram',core_count:int=1, save_as_trk=False):
output_filename:str='tractogram',core_count:int=1,
maskType:str="brain_mask",save_as_trk=False):
""" Computes the whole brain tractogram of a single patient based on the fod obtained from msmt-CSD.

:param folder_path: the path to the root directory.
Expand All @@ -3601,16 +3602,19 @@ def tracking_solo(folder_path:str, p:str, streamline_number:int=100000,
:param cutoff: Value below which streamlines do not propagate. default=0.1
:param msmtCSD: boolean. If True then uses ODF from msmt-CSD, if False from CSD. default=True
:param output_filename: str. Specify output filename for tractogram.
:param maskType: str. Specify a masking region of interest, streamlines exiting the mask will be truncated.
"""


assert maskType in ["brain_mask_dilated","brain_mask"], "The mask parameter must be one of the following : brain_mask_dilated, brain_mask"

import nibabel as nib
from elikopy.utils import dipy_fod_to_mrtrix
from dipy.io.streamline import load_tractogram, save_trk

patient_path = p
params={'Number of streamlines':streamline_number, 'Maximum angle':max_angle,
'Cutoff value':cutoff}

params={'Number of streamlines': streamline_number, 'Maximum angle': max_angle,
'Cutoff value': cutoff, 'Mask type': maskType}

if msmtCSD:
if not os.path.isdir(folder_path + '/subjects/' + patient_path + "/dMRI/ODF/MSMT-CSD/"):
Expand All @@ -3628,38 +3632,40 @@ def tracking_solo(folder_path:str, p:str, streamline_number:int=100000,
odf_file_path = folder_path + '/subjects/' + patient_path + "/dMRI/ODF/CSD/"+patient_path + "_CSD_SH_ODF_mrtrix.nii.gz"
params['Local modeling']='CSD'
tracking_path = folder_path + '/subjects/' + patient_path + "/dMRI/tractography/"
mask_path = folder_path + '/subjects/' + patient_path + '/masks/' + patient_path + "_brain_mask_dilated.nii.gz"
seed_path = folder_path + '/subjects/' + patient_path + '/masks/' + patient_path + "_brain_mask.nii.gz"
mask_path = folder_path + '/subjects/' + patient_path + '/masks/' + patient_path + '_' + maskType + '.nii.gz'
dwi_path = folder_path + '/subjects/' + patient_path + '/dMRI/preproc/' + patient_path + '_dmri_preproc.nii.gz'

output_file = tracking_path+patient_path+'_'+output_filename+'.tck'

if not os.path.isdir(tracking_path):
os.mkdir(tracking_path)

bashCommand=('tckgen -nthreads ' + str(core_count) + ' ' + odf_file_path +' '+ output_file+
' -seed_image ' +mask_path+
' -seed_image ' +seed_path+
' -select ' +str(streamline_number)+
' -angle ' +str(max_angle)+
' -cutoff ' +str(cutoff)+
' -mask ' +mask_path+
' -force')

tracking_log = open(tracking_path+"tractography_logs.txt", "a+")
process = subprocess.Popen(bashCommand, universal_newlines=True, shell=True, stdout=tracking_log,
stderr=subprocess.STDOUT)
process = subprocess.Popen(bashCommand, universal_newlines=True, shell=True,
stdout=tracking_log, stderr=subprocess.STDOUT)

process.communicate()

tracking_log.close()

if save_as_trk:
tract = load_tractogram(output_file, dwi_path)

save_trk(tract, output_file[:-3]+'trk')

with open(output_file[:-3]+'json', 'w') as outfile:
json.dump(params, outfile)


def sift_solo(folder_path: str, p: str, streamline_number: int = 100000,
msmtCSD: bool = True, input_filename: str = 'tractogram',
core_count: int = 1, save_as_trk=False):
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "elikopy"
version = "0.4.3"
version = "0.4.4"
description = "A set of tools for analysing dMRI"
authors = [
"qdessain <quentin.dessain@uclouvain.be>",
Expand Down