Skip to content

HeiderJeffer/MSc.-in-AI-ETH-Zurich-and-USI-Simulation-Modulation-and-Optimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 

Repository files navigation

Visitors-Counter

Title: "Simulation, Modulation, and Optimization"

Master in Artificial Intelligence

Speaker: Heider Jeffer

instructor: Mehdi Jazayeri

Assistant: Dr. Sasa Nesic


Abstract

The abstract provides a summary of the entire paper, including the objectives, methodology, and findings.

1. Introduction

1.1 Background

Explain the importance of simulation, modulation, and optimization in various fields such as operations research, engineering, and economics.

1.2 Objectives

Outline the objectives of this research paper: to explore simulation techniques, modulation methods, and optimization algorithms in Python.

2. Simulation Techniques

2.1 Discrete Event Simulation

Discuss discrete event simulation (DES) and its application in modeling systems with discrete, sequential events.

Implementation in Python:
# Example code for discrete event simulation
import simpy

# Define a process
def process(env):
    while True:
        # Define process behavior
        yield env.timeout(1)  # Simulate an event occurring every second

# Create a simulation environment
env = simpy.Environment()
env.process(process(env))

# Run the simulation
env.run(until=10)  # Run the simulation for 10 time units

2.2 Monte Carlo Simulation

Explain Monte Carlo simulation and its use in probabilistic modeling and risk analysis.

Implementation in Python:
# Example code for Monte Carlo simulation
import random

# Define a function to estimate pi using Monte Carlo simulation
def monte_carlo_pi(num_samples):
    inside_circle = 0
    for _ in range(num_samples):
        x = random.random()
        y = random.random()
        if x**2 + y**2 <= 1:
            inside_circle += 1
    return 4 * inside_circle / num_samples

# Perform Monte Carlo simulation to estimate pi
estimated_pi = monte_carlo_pi(100000)
print("Estimated value of pi:", estimated_pi)

3. Modulation Methods

3.1 Amplitude Modulation (AM)

Describe AM modulation and its application in telecommunications and signal processing.

Implementation in Python:
# Example code for amplitude modulation (AM)
import numpy as np
import matplotlib.pyplot as plt

# Generate a carrier signal
fc = 100  # Carrier frequency
fs = 1000  # Sampling rate
t = np.linspace(0, 1, fs, endpoint=False)
carrier = np.sin(2 * np.pi * fc * t)

# Generate a message signal
fm = 10  # Message frequency
message = np.sin(2 * np.pi * fm * t)

# Perform AM modulation
amplitude_modulated = (1 + message) * carrier

# Plot signals
plt.figure(figsize=(10, 6))
plt.plot(t, carrier, label='Carrier Signal')
plt.plot(t, message, label='Message Signal')
plt.plot(t, amplitude_modulated, label='AM Signal')
plt.title('Amplitude Modulation')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.show()

3.2 Frequency Modulation (FM)

Explain FM modulation and its advantages over AM in certain applications.

Implementation in Python:
# Example code for frequency modulation (FM)
import numpy as np
import matplotlib.pyplot as plt

# Generate a carrier signal
fc = 100  # Carrier frequency
fs = 1000  # Sampling rate
t = np.linspace(0, 1, fs, endpoint=False)
carrier = np.sin(2 * np.pi * fc * t)

# Generate a message signal
fm = 10  # Message frequency
message = np.sin(2 * np.pi * fm * t)

# Perform FM modulation
frequency_modulated = np.sin(2 * np.pi * (fc + message) * t)

# Plot signals
plt.figure(figsize=(10, 6))
plt.plot(t, carrier, label='Carrier Signal')
plt.plot(t, message, label='Message Signal')
plt.plot(t, frequency_modulated, label='FM Signal')
plt.title('Frequency Modulation')
plt.xlabel('Time')
plt.ylabel('Amplitude')
plt.legend()
plt.grid(True)
plt.show()

4. Optimization Algorithms

4.1 Genetic Algorithms

Discuss genetic algorithms and their application in optimization problems inspired by natural selection.

Implementation in Python:
# Example code for genetic algorithm
import numpy as np

# Define objective function (fitness function)
def fitness_function(x):
    return np.sum(x**2)

# Define genetic algorithm
def genetic_algorithm(population_size, num_generations):
    population = np.random.randint(0, 2, size=(population_size, 10))  # Initial population
    for generation in range(num_generations):
        fitness = np.apply_along_axis(fitness_function, 1, population)
        parents = population[np.argsort(fitness)[:population_size//2]]  # Selecting top half based on fitness
        children = []
        for _ in range(population_size - len(parents)):
            parent1, parent2 = np.random.choice(len(parents), size=2, replace=False)
            crossover_point = np.random.randint(1, 10)
            child = np.concatenate([parents[parent1][:crossover_point], parents[parent2][crossover_point:]])
            mutation_point = np.random.randint(0, 10)
            child[mutation_point] = 1 - child[mutation_point]  # Mutation
            children.append(child)
        population = np.vstack((parents, children))
    best_solution = population[np.argmin(np.apply_along_axis(fitness_function, 1, population))]
    return best_solution

# Example usage of genetic algorithm
best_solution = genetic_algorithm(population_size=100, num_generations=50)
print("Best solution found:", best_solution)
print("Fitness of best solution:", fitness_function(best_solution))

4.2 Gradient Descent

Explain gradient descent and its application in finding the minimum of a function.

Implementation in Python:
# Example code for gradient descent
import numpy as np

# Define the function to minimize
def function(x):
    return x**2 + 5*x + 6

# Define the derivative of the function
def derivative(x):
    return 2*x + 5

# Implement gradient descent
def gradient_descent(learning_rate, num_iterations):
    x = np.random.uniform(-10, 10)  # Initial guess
    for _ in range(num_iterations):
        x = x - learning_rate * derivative(x)
    return x

# Example usage of gradient descent
minimum = gradient_descent(learning_rate=0.1, num_iterations=100)
print("Minimum of the function:", minimum)
print("Function value at minimum:", function(minimum))

5. Conclusion

Summarize the key findings and contributions of this research paper. Discuss future directions for research in simulation, modulation, and optimization.


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published