Skip to content

Code for PLNet: Plane and Line Priors for Unsupervised Indoor Depth Estimation

License

Notifications You must be signed in to change notification settings

HalleyJiang/PLNet

Repository files navigation

PLNet

The Pytorch code for our following paper

PLNet: Plane and Line Priors for Unsupervised Indoor Depth Estimation, 3DV 2021 (pdf)

Hualie Jiang, Laiyan Ding, Junjie Hu and Rui Huang

Preparation

Installation

Install pytorch first by running

conda install pytorch=1.5.1 torchvision=0.6.1  cuda101 -c pytorch

Then install other requirements

pip install -r requirements.txt

Datasets & Preprocessing

Please download preprocessed (sampled in 5 frames) NYU-Depth-V2 dataset by Junjie Hu and extract it.

Extract the superpixels and line segments by excuting

python extract_superpixel.py --data_path $DATA_PATH
python extract_lineseg.py --data_path $DATA_PATH

Try an image

run depth_prediction_example.ipynb with jupyter notebook

Training

Using 3 Frames

python train.py --data_path $DATA_PATH --model_name plnet_3f --frame_ids 0 -2 2 

Using 5 Frames

Using the pretrained model from 3-frames setting gives better results.

python train.py --data_path $DATA_PATH --model_name plnet_5f --load_weights_folder models/plnet_3f --frame_ids 0 -4 -2 2 4

Evaluation

The pretrained models of our paper is available on Google Drive.

NYU Depth Estimation

python evaluate_nyu_depth.py --data_path $DATA_PATH --load_weights_folder $MODEL_PATH 

ScanNet Depth Estimation

python evaluate_scannet_depth.py --data_path $DATA_PATH --load_weights_folder $MODEL_PATH 

ScanNet Pose Estimation

python evaluate_scannet_pose.py --data_path $DATA_PATH --load_weights_folder $MODEL_PATH --frame_ids 0 1 

Note: to evaluate on ScanNet, one has to download the preprocessed data by P^2Net.

Acknowledgements

The project borrows codes from Monodepth2 and P^2Net. Many thanks to their authors.

Citation

Please cite our papers if you find our work useful in your research.

@inproceedings{jiang2021plnet,
  title={PLNet: Plane and Line Priors for Unsupervised Indoor Depth Estimation},
  author={Jiang, Hualie and Ding, Laiyan and Hu, Junjie and Huang, Rui},
  booktitle={In IEEE International Conference on 3D Vision (3DV)},
  year={2021}
}

About

Code for PLNet: Plane and Line Priors for Unsupervised Indoor Depth Estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published