Recommend to use Conda
Python == 3.10
pip install -r requirements.txt
docker build -t har .
# CPU only
docker -it --net=host har
# With GPU
docker -it --net=host --gpus all har
# Show video (Linux only)
xhost + && \
docker run -it --rm --net=host (--gpus all) \
-e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix har && \
xhost -
All configuration can be access at configs/run folder
CLI options:
python3 src/run.py --help
Example:
python3 src/run.py video.path=data/video/abc.mp4 video.speed=2 detector.model.conf=0.5 classifier=false features.heatmap=false features.track_box=false
- Dataset must be put in the data folder
- Configure the options in configs/data folder
- Then using the
video_preparation.py
orimage_preparation.py
file in the tools folder to generate the trainable data
# If using image
python3 tools/image_preparation.py auto.data_path=path/to/the/data
# If using video
python3 tools/video_preparation.py auto.data_path=path/to/the/data
Configure the training setting in configs/train.yaml:
CLI options:
python3 src/train.py --help
Training:
python3 src/train.py
- Most of the configurations can found in the configs folder.
train.py
contains additional setting need to be changed in the file directly. - See https://hydra.cc/docs/intro/ for configuration and CLI help.