-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy patha_SuperCell.Rmd
258 lines (192 loc) · 10.8 KB
/
a_SuperCell.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
---
title: "Example of the SuperCell pipeline"
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Example of the SuperCell pipeline}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "figures/",
fig.width = 6, fig.height = 6,
eval = TRUE
)
```
Installing SuperCell package from gitHub
```{r library, warning=FALSE, eval=FALSE}
if (!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("GfellerLab/SuperCell")
```
```{r load library, warning=FALSE}
library(SuperCell)
```
# Analysis
## Load scRNA-seq data of 5 cancer cell lines from [Tian et al., 2019](https://doi.org/10.1038/s41592-019-0425-8).
Data available at authors' [GitHub](https://github.com/LuyiTian/sc_mixology/blob/master/data/) under file name *sincell_with_class_5cl.Rdata*.
```{r load data}
data(cell_lines) # list with GE - gene expression matrix (logcounts), meta - cell meta data
GE <- cell_lines$GE
dim(GE) # genes as rows and cells as columns
cell.meta <- cell_lines$meta
```
## Simplify single-cell data at the graining level $gamma = 20$
(i.e., `20` times less metacells (called 'supercells' in the package functions) than single cells) by first building a kNN ($k=5$) network using top $n.var.genes=1000$ most variable genes for dimentionality reduction. Function `SCimplify()` computes the partition into metacells, this information is available with the field `membership`.
```{r Simplification, warning=FALSE, paged.print=FALSE}
gamma <- 20 # graining level
k.knn <- 5
# Building metacells from gene expressio (GE)
SC <- SCimplify(GE, # gene expression matrix
k.knn = k.knn, # number of nearest neighbors to build kNN network
gamma = gamma, # graining level
n.var.genes = 1000 # number of the top variable genes to use for dimentionality reduction
)
# Alternative, metacells can be build from low-dimensional embedding.
# For this, first compute low-dim embedding and pass it into `SCimplify_from_embedding()`
if(0){
SC_alt <- SCimplify_from_embedding(
X = stats::prcomp(Matrix::t(GE[SC$genes.use,]), rank. = 10)$x, # PCA embedding
k.knn = k.knn, # number of nearest neighbors to build kNN network
gamma = gamma # graining level)
)
}
# plot network of metacells
supercell_plot(SC$graph.supercells, # network
color.use = "gray", # color of the nodes
main = paste("Metacell network, gamma =", gamma),
seed = 1)
# plot single-cell network
supercell_plot(SC$graph.singlecell, # network
group = cell.meta, # colored by cell line assignment
do.frames = F, # not drawing frames around each node
main = paste("Single-cell network, N =", dim(GE)[2]),
lay.method = "components") # method to compute the network 2D embedding
```
## Compute gene expression for simplified data
To get a gene expression of metacells, we need to average gene expressions within each metacell with function `supercell_GE()`
```{r average gene expression}
SC.GE <- supercell_GE(GE, SC$membership)
dim(SC.GE)
```
## Map each metacell to a particular cell line
We now assign each metcell to a particular cell line based on the cell line data, for this, we use function `supercell_assign()`.
By default, this function assign each metacell to a cluster with the largest Jaccard coefficient to avoid biases towards very rare or very abundant clusters. Alternatively, assigmnent can be performed using relative (may cause biase towards very small populations) or absolute (may cause bias towards large populations) abundance with `method = "relative"` or `method = "absolute"`, respectively.
```{r assign metacells to cell line infromation}
SC$cell_line <- supercell_assign(clusters = cell.meta, # single-cell assigment to cell lines (clusters)
supercell_membership = SC$membership, # single-cell assignment to metacells
method = "jaccard")
seed <- 1 # seed for network plotting
# plot network of metacells colored by cell line assignment
supercell_plot(SC$graph.supercells,
group = SC$cell_line,
seed = seed,
main = "Metacells colored by cell line assignment")
```
The quality of assignment can be evaluated with metacell purity (function `supercell_purity()`) that returns the proportion of the most abundant cell type (in this case, cell line) in each metacell.
```{r purity of supercell in terms of cell line composition}
# compute purity of metacells in terms of cell line composition
purity <- supercell_purity(clusters = cell.meta,
supercell_membership = SC$membership, method = 'entropy')
hist(purity, main = "Purity of metacells \nin terms of cell line composition")
SC$purity <- purity
```
Some options to plot networks of metacells
```{r plotting options}
## rotate network to be more consistent with the single-cell one
supercell_plot(SC$graph.supercells,
group = SC$cell_line,
seed = seed,
alpha = -pi/2,
main = "Metacells colored by cell line assignment (rotated)")
## alternatively, any layout can be provided as 2xN numerical matrix, where N is number of nodes (cells)
## Let's plot metacell network using the layout of the single-cell network:
## 1) get single-cell network layout
my.lay.sc <- igraph::layout_components(SC$graph.singlecell)
## 2) compute metacell network layout averaging coordinates withing metacells
my.lay.SC <- Matrix::t(supercell_GE(ge = t(my.lay.sc), groups = SC$membership))
## 3) provide layout with the parameter $lay$
supercell_plot(SC$graph.supercells,
group = SC$cell_line,
lay = my.lay.SC,
main = "Metacells colored by cell line assignment (averaged coordinates)")
```
## Cluster metacell data
```{r clustering}
#dimensionality reduction
SC.PCA <- supercell_prcomp(Matrix::t(SC.GE), # metacell gene expression matrix
genes.use = SC$genes.use, # genes used for the coarse-graining, but any set can be provided
supercell_size = SC$supercell_size, # sample-weighted pca
k = 20)
## compute distance
D <- dist(SC.PCA$x)
## cluster metacells
SC.clusters <- supercell_cluster(D = D, k = 5, supercell_size = SC$supercell_size)
SC$clustering <- SC.clusters$clustering
```
## Map clusters of metacells to cell lines
```{r assign metacell clustering results to cell line information}
## mapping metacell cluster to cell line
map.cluster.to.cell.line <- supercell_assign(supercell_membership = SC$clustering, clusters = SC$cell_line)
## clustering as cell line
SC$clustering_reordered <- map.cluster.to.cell.line[SC$clustering]
supercell_plot(SC$graph.supercells,
group = SC$clustering_reordered,
seed = seed,
alpha = -pi/2,
main = "Metacells colored by cluster")
```
## Differential expression analysis of clustered metacell data
```{r differential expression analysis}
markers.all.positive <- supercell_FindAllMarkers(ge = SC.GE, # metacell gene expression matrix
supercell_size = SC$supercell_size, # size of metacell for sample-weighted method
clusters = SC$clustering_reordered, # clustering
logfc.threshold = 1, # mininum log fold-change
only.pos = T) # keep only upregulated genes
markers.all.positive$H2228[1:20,]
```
## Some additional plotting options
```{r Violin plots}
genes.to.plot <- c("DHRS2", "MT1P1", "TFF1", "G6PD", "CD74", "CXCL8")
supercell_VlnPlot(ge = SC.GE,
supercell_size = SC$supercell_size,
clusters = SC$clustering_reordered,
features = genes.to.plot,
idents = c("H1975", "H2228", "A549"),
ncol = 3)
supercell_GeneGenePlot(ge = SC.GE,
gene_x = genes.to.plot[1:3],
gene_y = genes.to.plot[4:6],
supercell_size = SC$supercell_size,
clusters = SC$clustering_reordered,)
```
### SuperCell graining level can be quickly chaged with `supercell_rescale()` function
```{r}
SC10 <- supercell_rescale(SC, gamma = 10)
SC10$cell_line <- supercell_assign(clusters = cell.meta, # single-cell assigment to cell lines (clusters)
supercell_membership = SC10$membership, # single-cell assignment to metacells
method = "jaccard")
supercell_plot(SC10$graph.supercells,
group = SC10$cell_line,
seed = 1,
main = "Metacells at gamma = 10 colored by cell line assignment")
### don't forget to recompute metacell gene expression matrix for a new grainig level with
# GE10 <- supercell_GE(GE, SC10$membership)
### if you are going to perform downstream analyses at the new graining level
```
### P.S.: SuperCell to [Seurat](https://cran.r-project.org/web/packages/Seurat/index.html) object
In case you want to perform other analyses available with Seurat package, we can convert SuperCell to [Seurat](https://cran.r-project.org/web/packages/Seurat/index.html) object with function `supercell_2_Seurat()` or to [SingleCellExperiment](https://bioconductor.org/packages/release/bioc/html/SingleCellExperiment.html) object with function 'supercell_2_sce()'. Let consider a Seurat example.
```{r Seurat}
#install.packages("Seurat")
library(Seurat)
m.seurat <- supercell_2_Seurat(SC.GE = as.matrix(SC.GE), SC = SC, fields = c("cell_line", "clustering", "clustering_reordered"))
```
Note: since metacells have different size (consist of different number of cells), we apply sample-weighted algorithms at most af the steps of the downstream analyses. Thus, when coercing SuperCell to Seurat, we replaced PCA, saling and kNN graph of Seurat object with those obtained applying sample-weighted version of PCA, scaling or SuperCell graph (i.e., metacell network), respectively. If you then again apply `RunPCA`, `ScaleData`, or `FindNeighbors`, the result will be rewritten, but you will be able to access them with `Embeddings(m.seurat, reduction = "pca_weigted")`, `m.seurat@assays$RNA@misc[["scale.data.weighted"]]`, or `m.seurat@graphs$RNA_super_cells`, respectively.
```{r PCAplot}
PCAPlot(m.seurat)
### cluster SuperCell network (unweighted clustering)
m.seurat <- FindClusters(m.seurat, graph.name = "RNA_nn") # now RNA_nn is metacell network
m.seurat <- FindNeighbors(m.seurat, verbose = FALSE) # RNA_nn has been replaced with kNN graph of metacell (unweigted)
m.seurat <- FindClusters(m.seurat, graph.name = "RNA_nn")
```