-
Notifications
You must be signed in to change notification settings - Fork 125
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement rounding method using the volumetric barrier (#313)
* generalize rounding loop * support sparse cholesky operator * complete sparse support in max_inscribed_ball * complete sparse support in preprocesing * add sparse tests * change main rounding function name * improve explaining comments * resolve PR comments * changing the dates in copyrights * use if constexpr instead of SNIFAE * update the examples to cpp17 * update to cpp17 order polytope example * fix templating in mat_computational_operators * fix templating errors and change header file to mat_computational_operators * first implementation of the volumetric barrier ellipsoid * add criterion for step_iter * restructure code that computes barriers' centers * remove unused comments * resolve PR comments * remove NT typename from max_step()
- Loading branch information
Showing
9 changed files
with
307 additions
and
155 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
// VolEsti (volume computation and sampling library) | ||
|
||
// Copyright (c) 2024 Vissarion Fisikopoulos | ||
// Copyright (c) 2024 Apostolos Chalkis | ||
// Copyright (c) 2024 Elias Tsigaridas | ||
|
||
// Licensed under GNU LGPL.3, see LICENCE file | ||
|
||
|
||
#ifndef BARRIER_CENTER_ELLIPSOID_HPP | ||
#define BARRIER_CENTER_ELLIPSOID_HPP | ||
|
||
#include <tuple> | ||
|
||
#include "preprocess/max_inscribed_ball.hpp" | ||
#include "preprocess/feasible_point.hpp" | ||
#include "preprocess/rounding_util_functions.hpp" | ||
|
||
/* | ||
This implementation computes the analytic or the volumetric center of a polytope given | ||
as a set of linear inequalities P = {x | Ax <= b}. The analytic center is the tminimizer | ||
of the log barrier function, i.e., the optimal solution | ||
of the following optimization problem (Convex Optimization, Boyd and Vandenberghe, Section 8.5.3), | ||
\min -\sum \log(b_i - a_i^Tx), where a_i is the i-th row of A. | ||
The volumetric center is the minimizer of the volumetric barrier function, i.e., the optimal | ||
solution of the following optimization problem, | ||
\min logdet \nabla^2 f(x), where f(x) the log barrier function | ||
The function solves the problems by using the Newton method. | ||
Input: (i) Matrix A, vector b such that the polytope P = {x | Ax<=b} | ||
(ii) The number of maximum iterations, max_iters | ||
(iii) Tolerance parameter grad_err_tol to bound the L2-norm of the gradient | ||
(iv) Tolerance parameter rel_pos_err_tol to check the relative progress in each iteration | ||
Output: (i) The Hessian of the barrier function | ||
(ii) The analytic/volumetric center of the polytope | ||
(iii) A boolean variable that declares convergence | ||
Note: Using MT as to deal with both dense and sparse matrices, MT_dense will be the type of result matrix | ||
*/ | ||
template <typename MT_dense, int BarrierType, typename NT, typename MT, typename VT> | ||
std::tuple<MT_dense, VT, bool> barrier_center_ellipsoid_linear_ineq(MT const& A, VT const& b, VT const& x0, | ||
unsigned int const max_iters = 500, | ||
NT const grad_err_tol = 1e-08, | ||
NT const rel_pos_err_tol = 1e-12) | ||
{ | ||
// Initialization | ||
VT x = x0; | ||
VT Ax = A * x; | ||
const int n = A.cols(), m = A.rows(); | ||
MT H(n, n), A_trans = A.transpose(); | ||
VT grad(n), d(n), Ad(m), b_Ax(m), step_d(n), x_prev; | ||
NT grad_err, rel_pos_err, rel_pos_err_temp, step, obj_val, obj_val_prev; | ||
unsigned int iter = 0; | ||
bool converged = false; | ||
const NT tol_bnd = NT(0.01), tol_obj = NT(1e-06); | ||
|
||
auto [step_iter, max_step_multiplier] = init_step<BarrierType, NT>(); | ||
auto llt = initialize_chol<NT>(A_trans, A); | ||
get_barrier_hessian_grad<MT_dense, BarrierType>(A, A_trans, b, x, Ax, llt, | ||
H, grad, b_Ax, obj_val); | ||
do { | ||
iter++; | ||
// Compute the direction | ||
d.noalias() = - solve_vec<NT>(llt, H, grad); | ||
Ad.noalias() = A * d; | ||
// Compute the step length | ||
step = std::min(max_step_multiplier * get_max_step(Ad, b_Ax), step_iter); | ||
step_d.noalias() = step*d; | ||
x_prev = x; | ||
x += step_d; | ||
Ax.noalias() += step*Ad; | ||
|
||
// Compute the max_i\{ |step*d_i| ./ |x_i| \} | ||
rel_pos_err = std::numeric_limits<NT>::lowest(); | ||
for (int i = 0; i < n; i++) | ||
{ | ||
rel_pos_err_temp = std::abs(step_d.coeff(i) / x_prev.coeff(i)); | ||
if (rel_pos_err_temp > rel_pos_err) | ||
{ | ||
rel_pos_err = rel_pos_err_temp; | ||
} | ||
} | ||
|
||
obj_val_prev = obj_val; | ||
get_barrier_hessian_grad<MT_dense, BarrierType>(A, A_trans, b, x, Ax, llt, | ||
H, grad, b_Ax, obj_val); | ||
grad_err = grad.norm(); | ||
|
||
if (iter >= max_iters || grad_err <= grad_err_tol || rel_pos_err <= rel_pos_err_tol) | ||
{ | ||
converged = true; | ||
break; | ||
} | ||
get_step_next_iteration<BarrierType>(obj_val_prev, obj_val, tol_obj, step_iter); | ||
} while (true); | ||
|
||
return std::make_tuple(MT_dense(H), x, converged); | ||
} | ||
|
||
template <typename MT_dense, int BarrierType, typename NT, typename MT, typename VT> | ||
std::tuple<MT_dense, VT, bool> barrier_center_ellipsoid_linear_ineq(MT const& A, VT const& b, | ||
unsigned int const max_iters = 500, | ||
NT const grad_err_tol = 1e-08, | ||
NT const rel_pos_err_tol = 1e-12) | ||
{ | ||
VT x0 = compute_feasible_point(A, b); | ||
return barrier_center_ellipsoid_linear_ineq<MT_dense, BarrierType>(A, b, x0, max_iters, grad_err_tol, rel_pos_err_tol); | ||
} | ||
|
||
#endif // BARRIER_CENTER_ELLIPSOID_HPP |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.