- Step 1: Clone the repo
- Step 2: Create a virtual environment
- Step 3: Install dependencies
- Step 4: Update config.yaml
- Step 5: Run the setup script
- Step 6: Run KG-RAG from your terminal
KG-RAG stands for Knowledge Graph-based Retrieval Augmented Generation.
KG_RAG_schematics.mov
It is a task agnostic framework that combines the explicit knowledge of a Knowledge Graph (KG) with the implicit knowledge of a Large Language Model (LLM). Here is the arXiv preprint of the work.
Here, we utilize a massive biomedical KG called SPOKE as the provider for the biomedical context. SPOKE has incorporated over 40 biomedical knowledge repositories from diverse domains, each focusing on biomedical concept like genes, proteins, drugs, compounds, diseases, and their established connections. SPOKE consists of more than 27 million nodes of 21 different types and 53 million edges of 55 types [Ref]
The main feature of KG-RAG is that it extracts "prompt-aware context" from SPOKE KG, which is defined as:
the minimal context sufficient enough to respond to the user prompt.
Hence, this framework empowers a general-purpose LLM by incorporating an optimized domain-specific 'prompt-aware context' from a biomedical KG.
Following snippet shows the news from FDA website about the drug "setmelanotide" approved by FDA for weight management in patients with Bardet-Biedl Syndrome
Note: This example was run using KG-RAG v0.3.0. We are prompting GPT from the terminal, NOT from the chatGPT browser. Temperature parameter is set to 0 for all the analysis. Refer this yaml file for parameter setting
bbsyndrome_without_kgrag.mov
Note: This example was run using KG-RAG v0.3.0. Temperature parameter is set to 0 for all the analysis. Refer this yaml file for parameter setting
bbsyndrome_with_kgrag.mov
You can see that, KG-RAG was able to give the correct information about the FDA approved drug.
Clone this repository. All Biomedical data used in the paper are uploaded to this repository, hence you don't have to download that separately.
Note: Scripts in this repository were run using python 3.10.9
conda create -n kg_rag python=3.10.9
conda activate kg_rag
cd KG_RAG
pip install -r requirements.txt
config.yaml holds all the necessary information required to run the scripts in your machine. Make sure to populate this yaml file accordingly.
Note: There is another yaml file called system_prompts.yaml. This is already populated and it holds all the system prompts used in the KG-RAG framework.
Note: Make sure you are in KG_RAG folder
Setup script runs in an interactive fashion.
Running the setup script will:
- create disease vector database for KG-RAG
- download Llama model in your machine (optional, you can skip this and that is totally fine)
python -m kg_rag.run_setup
Note: Make sure you are in KG_RAG folder
You can run KG-RAG using GPT and Llama model.
python -m kg_rag.rag_based_generation.GPT.text_generation -g <your favorite gpt model - "gpt-4" or "gpt-35-turbo">
Example:
Note: The following example was run on AWS p3.8xlarge EC2 instance and using KG-RAG v0.3.0.
gpt_demo.mov
This allows the user to go over each step of the process in an interactive fashion
python -m kg_rag.rag_based_generation.GPT.text_generation -i True -g <your favorite gpt model - "gpt-4" or "gpt-35-turbo">
Note: If you haven't downloaded Llama during setup step, then when you run the following, it may take sometime since it will download the model first.
python -m kg_rag.rag_based_generation.Llama.text_generation -m <method-1 or method2, if nothing is mentioned it will take 'method-1'>
Example:
Note: The following example was run on AWS p3.8xlarge EC2 instance and using KG-RAG v0.3.0.
llama_demo.mov
This allows the user to go over each step of the process in an interactive fashion
python -m kg_rag.rag_based_generation.Llama.text_generation -i True -m <method-1 or method2, if nothing is mentioned it will take 'method-1'>