Skip to content

An benchmark for evaluating the capabilities of large vision-language models (LVLMs)

License

Notifications You must be signed in to change notification settings

FudanDISC/ReForm-Eval

Repository files navigation

ReForm-Eval

Fudan Disc Logo

ReForm-Eval: EVALUATING LARGE VISION LANGUAGE MODELS VIA UNIFIED RE-FORMULATION OF TASK-ORIENTED BENCHMARKS

Zejun Li1† , Ye Wang1† , Mengfei Du1† , Qingwen Liu1† , Binhao Wu1† , Jiwen Zhang1† , Chengxing Zhou2 , Zhihao Fan3 , Jie Fu4 , Jingjing Chen1 , Xuanjing Huang1 , Zhongyu Wei1*.

1Fudan University 2Northeastern University 3Alibaba Group 4Hong Kong University of Science and Technology

†Equal Contribution *Corresponding Author


ReForm-Eval Paper | πŸ€—ReForm-Eval-Data | ☁️Google Drive

Recent years have witnessed remarkable progress in the development of large vision-language models (LVLMs). Benefiting from the strong language backbones and efficient cross-modal alignment strategies, LVLMs exhibit surprising capabilities to perceive visual signals and perform visually grounded reasoning. However, the capabilities of LVLMs have not been comprehensively and quantitatively evaluated. Most existing multi-modal benchmarks require task-oriented input-output formats, posing great challenges to automatically assess the freeform text output of LVLMs. To effectively leverage the annotations available in existing benchmarks and reduce the manual effort required for constructing new benchmarks, we propose to re-formulate existing benchmarks into unified LVLM compatible formats. Through systematic data collection and reformulation, we present the ReForm-Eval benchmark, offering substantial data for evaluating various capabilities of LVLMs. Based on ReForm-Eval, we conduct extensive experiments, thoroughly analyze the strengths and weaknesses of existing LVLMs, and identify the underlying factors. Our benchmark and evaluation framework will be open-sourced as a cornerstone for advancing the development of LVLMs.

We explore ways of re-formulating existing benchmarks into unified formats that are compatible with LVLMs.

Existing LVLMs Evaluation:

  • No Quantification: The capabilities of existing LVLMs are mainly demonstrated only by qualitative examples.
  • Task-Oriented: Most existing multi-modal benchmarks cannot be directly utilized to evaluate LVLMs since they are designed for specific tasks and rely on structured input-output formats for evaluation, even need to be fine-tuned or learn task-specific parameters.
  • Limited Samples: Limited manual annotation such as around 100 samples per dimension in MME and MMBench could potentially introduce evaluation bias into the results.

Based on the re-formulation framework, we present our unified multi-modal benchmark, ReForm-Eval:

  • Larger Data Scale: ReForm-Eval provides a dataset scale almost 100 times larger than existing benchmarks, allowing models to be comprehensively evaluated across various dimensions.

  • Without Manual Annotation: ReForm-Eval leverages publicly open resources, reducing annotation costs while providing a larger-scale dataset.

  • Universal Evaluation: Unlike LVLM-ehub which requires designing complex and dataset-specific evaluation strategies, ReForm-Eval offers greater scalability and a more universally applicable and efficient evaluation approach.

  • Comprehensive Evaluation: We re-formulate 61 benchmark datasets based on existing data resources, the evaluation dimensions range from basic visual perception to high-level visual reasoning and dialog.

  • Unified Re-formulation: Multi-modal benchmark datasets are re-formulated as multiple-choice problems or specialized text generation problems. Additionally, generation-based black-box and likelihood-based white-box approaches are implemented for evaluation.

The unified formulation enables universal and comprehensive evaluation. For each formulation, we design a consistent and reliable evaluation method. As mentioned in (Fu et al., 2023), current LVLMs may struggle to follow multiple-choice instructions, we propose both black-box and white-box approaches to assist:

(1) Guiding LVLMs to output in desired formats through in-context learning;

(2) Directly calculating the generation probability for options and selecting the one with the highest value.

Considering the sensitivity of LVLMs to the input prompts (Zeng et al., 2023), we additionally design an instability-aware evaluation strategy and introduce a metric to characterize such instability.

πŸ”§πŸ”§πŸ”§ ReForm-Eval serves as a reliable tool for quantitative analysis of LVLMs, aiding in the research and development of LVLMs. πŸ”§πŸ”§πŸ”§

πŸ™ŒπŸ™ŒπŸ™Œ We welcome a diverse range of large vision and language models to participate in ReForm-Eval benchmark evaluation!!! πŸ™ŒπŸ™ŒπŸ™Œ

πŸ“£ Update

If you have any questions, please send us an email or leave a github issue! Email: yewang22@m.fudan.edu.cn

  • [2023-11] We added BLEU, Meteor, and Rouge-L metrics for the Generation task, and update Ground IC15, FUNSD dataset.
  • [2023-10] We released the initial version of the ReForm-Eval, containing interfaces of 16 models and 61 converted reformulated datasets πŸ€—ReForm-Eval-Data!

πŸ“– Contents

🦾 Model Performance

We list the average ranking and the score of the model under Generation Evaluation and Likelihood Evaluation in the table below.

If you get results on our benchmark using the new LVLM interface, please contact us to add your model to this table. Email: yewang22@m.fudan.edu.cn

Model Gen-Avg-Rank Gen-Avg-Score Like-Avg-Rank Like-Avg
BLIP-2 2.3 62.94 4.3 62.92
InstructBLIP_F 2.0 60.77 4.0 63.48
InstructBLIP_V 4.4 52.20 3.0 64.37
LLaVA_V 11.1 34.24 8.7 55.49
LLaVA_L2 5.9 45.78 11.2 52.97
MiniGPT4 7.3 43.12 7.8 56.15
mPLUG-Owl 10.6 37.95 10.3 53.69
PandaGPT 13.9 26.84 15.8 41.80
IB-LLM 13.0 30.24 14.5 47.58
LA-V2 12.5 32.60 12.2 50.00
mmGPT 14.4 29.38 12.8 50.92
Shikra 11.0 36.14 7.0 58.40
Lynx 5.0 50.00 2.8 63.93
Cheetor_V 6.8 44.74 8.2 56.73
Cheetor_L2 7.9 41.75 10.7 52.43
BLIVA 7.9 42.40 2.7 64.92

Gen-Avg-Rank and Like-Avg-Rank represents the average rank of Generation and Likelihood evaluation. Gen-Avg-Score and Like-Avg-Score are the average score of Generation and Likelihood evaluation, respectively.

πŸ”₯ Getting Start

Install

1. Git clone our repository, via the following command

git clone https://github.com/FudanDISC/ReForm-Eval.git
cd ReForm-Eval
pip install -r requirements.txt

If you want to test all existing 16 models, you need to run the following command

git clone https://github.com/FudanDISC/ReForm-Eval.git --recursive
cd ReForm-Eval
pip install -r requirements.txt

2. Build from source

git clone https://github.com/FudanDISC/ReForm-Eval.git
cd ReForm-Eval
pip install .

The advantage of building from source is that you can directly replace the command of python run_eval.py and python run_loader_eval.py with the run_eval or run_loader_eval by modifying the config file, and can be executed in any path, including the dataloader function load_reform_dataset.

Open your shell configuration file.

vim ~/.bashrc

Add the following line at the end of the file:

export PYTHONPATH=/path/to/ReForm-Eval:$PYTHONPATH

Note: Once you use run_eval or run_loader_eval on other paths, the parameters related to the file dir should be set to absolute paths.

Pipeline

Our benchmark provides accuracy and instability as metrics for each task, to quantify the model performance. We provide two methods:

(A) Create the interface in our framework and run it directly.

(B) Use the Data Loader we provide and output the inference results, then provide a new script to evaluate with our benchmark, taking the problem formulation and the output json file as input.

Method A

Step 1: Use an existing model interface or create a new model interface based on ReForm-Eval framework refer to Create Your Own Model Interface.

Step 2: Create the conda env corresponding to the model and install the necessary packages.

Step 3: Switch to the corresponding conda env, run run_eval.py in the root path of this repository, and add necessary parameters.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 run_eval.py \
    --model lynx  --model_name models/interfaces/lynx/configs/LYNX.yaml \
    --dataset_name VisDial --output_dir output/lynx/VisDial/test_generation/ \
    --per_gpu_eval_batch_size 4 --formulation SingleChoice \
    --infer_method generation --do_eval --half_evaluation  --dataset_duplication 1 \
    --in_context_sample --option_mark upper \
    --dataset_config build/configs/VisDial_val_v1.2.yaml \

Step 4: Check the inference progress and results in the terminal. The accuracy, (the format hit rate or instability) can also be viewed in output_dir/log.txt.

Method B

Step 1: Build a dataset using our Data Loader and process them into a string with the desired format of the corresponding model.

Step 2: The model outputs a json file, such as /path/to/TDIUC_SingleChoice_likelihood_imagebindLLM_imagebindLLM.json', based on the dataset built by step 1.

Step 3: Run our new script run_loader_eval.py, taking the problem formulation and the output json file as main parameters of input.

python run_loader_eval.py --formulation SingleChoice --infer_method likelihood --eval_stability \
    --prediction_file test_output/SingleChoice/TDIUC_SingleChoice_likelihood_imagebindLLM_imagebindLLM.json

Or

from run_loader_eval import loader_eval

dataset = loader_eval(formulation='SingleChoice',
            infer_method='likelihood',
            multi_round_eval=False,
            eval_stability=True,
            prediction_file='/path/to/TDIUC_SingleChoice_likelihood_imagebindLLM_imagebindLLM.json'
)

Note: There are four types of Formulation: SingleChoice, Generation, OCROpenEnded and KIEOpenEnded, respectively. It can only be set eval_stability and multi_round_eval when --formulation SingleChoice, which means that only SingleChoice can measure the instability and be used for the multi-round evaluation.

Notice that each sample in the output json are supposed to be specific format:

{
  # dataset information
  'sample_id': 'VQA_0'
  'answer': 1
  'answer_options': ['yes', 'no', 'maybe']
  'prediction': '(A) yes' # the prediction
}

Note: During generation-based evaluation for multiple-choice questions, we only consider the format like (A), (a), (1), if a prediction does not hit the format, it will be considered wrong. The requirement for likelihood prediction is int, and for generation prediction is str.

Step 4: The accuracy, (the format hit rate or instability) can be viewed in output_dir/log.txt.

Load Data

There are two ways to load data, using our framework directly or using Data Loader.

The most recommendation is using Hugging Face Data, which we call it ReForm-Eval-Data. We introduce how to load ReForm-Eval-Data from Hugging Face Hub or the local path. If this still does not work, we also provide other loading methods. Please refer to Prepare Dataset for more details.

Here is the Google Drive link of ReForm-Eval-Data and you can directly download it to load from the local path!

download URL

https://drive.google.com/file/d/1GjWvm0f6fkJ7VFySKyEfb2N_KyZxcdyI/view

wget

wget https://drive.google.com/uc?export=download&id=1GjWvm0f6fkJ7VFySKyEfb2N_KyZxcdyI

Using ReForm-Eval Framework

If you load data from ReForm-Eval Framework, when running run_eval.py and run_loader_eval.py, you should set the data-related parameters, including --dataset_name, --formulation, --dataset_config, --dataset_duplication, --in_context_sample and --capitalize.

Please set --hf or --offline_hf if you would like to load ReForm-Eval-Data. --hf is loading from Hugging Face Hub, and --offline_hf is loading ReForm-Eval-Data from the local path. If set at the same time, data will be loaded from Hugging Face Hub.

Using Data Loader

ReForm-Eval provides the direct data loader if you would like to perform evaluation without our framework. Here is an example:

from build import load_reform_dataset

# example for loading VQA v2
dataset = load_reform_dataset(
    # dataset config, please check Data Usage for available arguments
    dataset_name='VQA',
    formulation='SingleChoice',
    dataset_config='/path/to/ReForm-Eval/build/configs/VQA_vqa_v2_val.yaml',
    inference_method='generation', # inference method, generation / likeligood
    in_context_sample=True, # whether to include in-context-sample
    random_instruct=True, # whether to use different instructions for the same sample
    data_duplication=5, # number of multiple tests for the same sample
    shuffle_options=True, # whether to shuffle the options for the same sample
    load_from_hf=True, # (Optional) whether to load from huggingface
    option_mark='upper', # (Optional) the option mark to use, number/upper/lower/random
    offline_from_hf=False # (Optional) whether to load the huggingface data from the local path
)

Notice that each sample of the loaded dataset will be a dict containing all information like:

{
    'sample_id': 'VQA_000',
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x484>,
    'question': 'Is there a cat in the image?',
    'answer': 2,
    'answer_options': ['yes', 'no', 'maybe'],
    'instruct': 'Based on the image, answer the question with the provided options.',
    'question_with_option': 'Is there a cat in the image? Options: (A) yes; (B) no; (C) maybe.'
}

You may need to process them into a string with the desired format. You may be intersted in the Preprocessors we used in ReForm-Eval to gather the information into a dialogue-like string as the input for you model. All valid datasets and corresponding arguments are in the Data Usage.

Please set load_from_hf=True or offline_from_hf=True if you would like to load ReForm-Eval-Data. load_from_hf=True is loading from Hugging Face Hub, and offline_from_hf=True is loading ReForm-Eval-Data from the local path. If True is set at the same time, data will be loaded from Hugging Face Hub.

Create Your Own Model Interface

To add new models, you need to create the corresponding model interface for the unified evaluation. For a general new model interface, please refer to the interface template in /path/to/ReForm-Eval/models/interfaces/base_interface.py. Here we provide a step-by-step guide for the convenience of your implementation (taking Lynx as an example).

Step 1: Configure the Code Path

Add the Lynx project as a submodule to /path/to/ReForm-Eval/models/interfaces/:

cd models/interfaces
git submodule add https://github.com/bytedance/lynx-llm.git

Step 2: Model Loading

Refer to the code for loading the model in the original Lynx project.

def main(args, config):
    print("### Evaluating", flush=True)
    device = torch.device(args.device)

    seed = args.seed + utils.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    cudnn.benchmark = True

    print("config:", json.dumps(config), flush=True)
    print("output_path, ", args.output_path, flush=True)

    print("### Creating model", flush=True)
    from models.lynx import LynxBase
    model = LynxBase(config=config, freeze_vit=config['freeze_vit'], freeze_llm=config['freeze_llm'], load_bridge=False)

So, we can implement the __init__ function for model loading in our interface:

class Lynx_Interface(nn.Module):
    def __init__(self, model_config=None, device=None, half=False, inference_method='generation') -> None:
        super(Lynx_Interface, self).__init__()
        # setup the model device
        if device is None:
            self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        else:
            self.device = torch.device(device)
        
        # loading the model
        self.config = yaml.load(open(model_config, 'r'), Loader=yaml.Loader)
        self.model = LynxBase(config=self.config, freeze_vit=self.config['freeze_vit'], freeze_llm=self.config['freeze_llm'], load_bridge=False)
        
        # locate the model to half-precision and target device if needed
        self.prec_half = half
        if self.prec_half:
            self.model = self.model.half()
        self.model = self.model.to(self.device)
        
        # setup the inference method
        self.inference_method = inference_method

Step 3: Implement the Inference Function

Generation-based Black-Box Evaluation

We provide the Black-box Generation-based Inference Method.

Black-box Generation-based Inference Method

Args:
    image (list[PIL.Image]):
        The batch of input images. Each element is loaded as PIL.Image.
    prompt (list[str]):
        The batch of input textual prompts. Prompts should be formulated as a dialoge by the
        model preprocessor (see utils/preprocessors.py)
    temperature (float, **optional**):
        A generation-related parameter: the temperature parameter in the generation process
        of language models.
    max_new_tokens (int, **optional**):
        A generation-related parameter: the maximal number of tokens a model can generate.
        
Returns:
    outputs (list[str]):
        The generated output response in text.

An example is provided below:

>>> # An example of VQA for LLaVA
>>> from models.interfaces.llava_interface import LLaVA_Interface
>>> from PIL import Image

>>> image = Image.open(PATH_TO_IMAGE).convert('RGB')
>>> model = LLaVA_Interface(PATH_TO_LLAVA, device='cuda:0')

>>> prompt = "A chat between a curious human and an artificial intelligence assistant. The\
              assistant gives helpful detailed, and polite answers to the human's questions.\
              ###Human: <image>\n Can you see the Image? Options: (A) yes; (B) no.\
              ###Assistant: The answer is (A) yes.\
              ###Human: What color is the truck? Options: (A) blue; (B) orange.\
              ###Assistant: The answer is"

>>> # Generation-based Inference
>>> outputs = model.raw_batch_generate([image], [prompt])
>>> outputs
"(B) orange."

Then, find the generation-related code in the original Lynx project.

@torch.no_grad()
def evaluation(model, data_loader, device, config):
    # test
    model.eval()
    result = []

    for n, (idx, vision_input, input_ids, input_atts) in enumerate(data_loader):
        vision_input = vision_input.to(device, non_blocking=True)
        input_ids = input_ids.to(device)
        input_atts = input_atts.to(device)

        text_outputs = model.generate(
            vision_input=vision_input,
            input_ids=input_ids, input_atts=input_atts,
            use_nucleus_sampling=config.get('use_nucleus_sampling', False),
            apply_lemmatizer=config['apply_lemmatizer'],
            num_beams=config['num_beams'],
            min_length=config['min_length'],
            length_penalty=config.get('length_penalty', 1.0),
            no_repeat_ngram_size=config.get('no_repeat_ngram_size', -1),
            top_p=config.get('top_p', 0.9),
            top_k=config.get('top_k', 3),
            max_new_tokens=config.get('max_new_tokens', 64))

        for i, output in zip(idx, text_outputs):
            result.append({"index": i, "text_output": output.strip()})

    return result

Therefore, in lynx_interface.py, we can implement the generation inference function as:

    @torch.no_grad()
    def raw_generate(self, image, prompt, temperature=1, max_new_tokens=30):
        vision_input = self.load_vision_inp(image).unsqueeze(0)
        if self.prec_half:
            vision_input = vision_input.to(torch.float16)
        
        input_ids, input_atts = self.process_text(prompt)
        
        answer = self.model.generate(
            vision_input=vision_input,
            input_ids=input_ids, input_atts=input_atts,
            use_nucleus_sampling=self.config.get('use_nucleus_sampling', False),
            apply_lemmatizer=self.config['apply_lemmatizer'],
            num_beams=3, # self.config['num_beams'],
            min_length=self.config['min_length'],
            length_penalty=self.config.get('length_penalty', 1.0),
            no_repeat_ngram_size=self.config.get('no_repeat_ngram_size', -1),
            top_p=self.config.get('top_p', 0.9),
            top_k=self.config.get('top_k', 3),
            max_new_tokens=max_new_tokens,
            temperature=temperature)

        return answer[0]

In this function, you have to use the internal vision processor to get the vision input (open and get the image), and the internal tokenizer to get the input_ids and input_atts. All of these codes can be directly found and implemented from the original project.

    def load_vision_inp(self, vision_inp):
        if vision_inp is None:
            return None

        elif isinstance(vision_inp, list) or isinstance(vision_inp, np.ndarray):
            return self._get_frames(vision_inp)

        elif isinstance(vision_inp, str):

            if os.path.exists(vision_inp):
                image = Image.open(vision_inp).convert('RGB')

            else:  # base64 encoding
                try:
                    image = Image.open(io.BytesIO(b64decode(vision_inp))).convert("RGB")
                except Exception as e:
                    raise ValueError(f"check whether it is a rpath (and not exist)?: {vision_inp} {e}")
        else:
            image = vision_inp
        
        image = self.img_transform(image)

        return image.to(self.device)
    
    def process_text(self, text):
        text = text.strip()
        if self.lower_text:
            text = text.lower()
        input_ids = [self.tokenizer.bos_token] + self.tokenizer.tokenize(text)
        # print(input_ids)
        input_ids = self.tokenizer.convert_tokens_to_ids(input_ids)
        input_atts = torch.LongTensor([[1]*len(input_ids)])
        input_ids = torch.LongTensor([input_ids])
        return input_ids.to(self.device), input_atts.to(self.device)

Likelihood-based White-Box Evaluation

We provide the White-box Likelihood-based Inference Method.

White-box Likelihood-based Inference Method

Args:
    image (list[PIL.Image]):
        The batch of input images. Each element is loaded as PIL.Image.
    prompt (list[str]):
        The batch of input textual prompts. Prompts should be formulated as a dialoge by the
        model preprocessor (see utils/preprocessors.py)
    candidates (list[list[str]]):
        The list of candidate lists, each element (candidates[i]) is the candidate list
        of the corresponding question.
        
Returns:
    outputs (list[int]):
        The generated output prediction index. Each element (outputs[i]) is the selected index
        of the corresponding candidates. The prediction is therefore (candidates[i][outputs[i]])

Here is an example:

>>> # An example of VQA for LLaVA
>>> from models.interfaces.llava_interface import LLaVA_Interface
>>> from PIL import Image

>>> image = Image.open(PATH_TO_IMAGE).convert('RGB')
>>> model = LLaVA_Interface(PATH_TO_LLAVA, device='cuda:0')

>>> prompt = "A chat between a curious human and an artificial intelligence assistant. The\
              assistant gives helpful detailed, and polite answers to the human's questions.\
              ###Human: What color is the truck?\
              ###Assistant:"
>>> candidates = ['orange', 'blue']

>>> # Likelihood-based Inference
>>> outputs = model.raw_batch_predict([image], [prompt], [candidates])
>>> outputs
1

To support the likelihood evaluation, we add the following function in our model file /path/to/ReForm-Eval/models/interfaces/lynx/models/lynx.py to calculate the loss (neg-log likelihood) for each sequence.

    def forward_likelihood(self, vision_input, input_ids, input_atts, labels, likelihood_reduction='sum'):
        text_embeds = self.embed_tokens(input_ids)

        if vision_input is not None:
            vision_embeds, vision_atts = self.get_vision_embeds(vision_input)
            v2t_feats, v2t_atts = self.bridge(vision_embeds=vision_embeds, vision_atts=vision_atts)

            inputs_embeds = torch.cat([v2t_feats, text_embeds], dim=1)
            attention_mask = torch.cat([v2t_atts, input_atts], dim=1)

        else:
            inputs_embeds = text_embeds
            attention_mask = input_atts

        outputs = self.LLM(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            labels=labels,
            return_dict=True,
            reduction='none'
        )
        loss = outputs.loss.reshape(inputs_embeds.shape[0], -1)
        if likelihood_reduction == 'sum':
            loss = loss.sum(1)
        elif likelihood_reduction == 'mean':
            valid_num_targets = (loss > 0).sum(1)
            loss = loss.sum(1) / valid_num_targets
        elif likelihood_reduction == 'none':
            loss = loss
        else:
            raise ValueError
        return loss

Hence, in lynx_interface.py, we can use self.model.forward_likelihood at the raw_predict function.

    def raw_predict(self, image, prompt, candidates, likelihood_reduction='sum'):
        # loading the image-text pair
        vision_input = self.load_vision_inp(image).unsqueeze(0)
        if self.prec_half:
            vision_input = vision_input.to(torch.float16)
        
        input_ids, attention_mask = self.process_text(prompt)
        
        # get the embedding from the input
        num_cand = len(candidates)
        input_seq_len = input_ids.shape[1]

        # tokenize the candidates
        current_padding_side = self.tokenizer.padding_side
        current_truncation_side = self.tokenizer.truncation_side
        self.tokenizer.padding_side = 'right'
        self.tokenizer.truncation_side = 'right'
        if self.lower_text:
            candidates = [cand.lower() for cand in candidates]
        candidates_tokens = self.tokenizer(
            candidates,
            return_tensors='pt',
            padding='longest'
        ).to(self.device)
        self.tokenizer.padding_side = current_padding_side
        self.tokenizer.truncation_side = current_truncation_side

        # construct the inputs_ids and LM targets
        candidates_ids = candidates_tokens.input_ids[:, 1:] # remove the <s> token
        candidates_att = candidates_tokens.attention_mask[:, 1:] # remove the <s> token
        # mask the LM targets with <pad>
        cand_targets = candidates_ids.clone()
        cand_targets = cand_targets.masked_fill(cand_targets == self.tokenizer.pad_token_id, -100)
        # mask the targets for inputs part
        targets = torch.cat([-100*torch.ones(num_cand, input_seq_len+self.config["num_bridge_tokens"], dtype=torch.long, device=self.device), \
                             cand_targets], dim=1)
        # concatenate the inputs for the model
        attention_mask = torch.cat([attention_mask.repeat_interleave(num_cand, dim=0), candidates_att], dim=1)
        full_input_ids = torch.cat([input_ids.repeat_interleave(num_cand, dim=0), candidates_ids], dim=1)
        
        # calculate the loss (neg-log likelihood) for each candidate
        with torch.inference_mode():
            outputs = self.model.forward_likelihood(
                vision_input=vision_input.repeat_interleave(num_cand, dim=0),
                input_ids=full_input_ids,
                input_atts=attention_mask,
                labels=targets,
                likelihood_reduction=likelihood_reduction
            )
        neg_likelihood = outputs
        # select the one with the highest likelihood / lowest loss
        output_class_ranks = torch.argsort(neg_likelihood, dim=-1)[0].item()

        return output_class_ranks

Step 4: Implement the Preprocessor

Preprocessors are used to formulate the structural information in order to get the correct form of dialogue. Our preprocessor is in /path/to/ReForm-Eval/utils/preprocessors.py.

class ConvSingleChoiceProcessor(object):
    def __init__(self, sep, sep2=None, roles=['Question', 'Answer'], system_msg=None, first_query_fn=None, \
                 init_conv=None, sep_style='two', alphabet_choice=None, infer_method='generation', response_prefix=None):
        """
        Preprocessors to convert input information into a dialogue string
        
        Args:
            sep (str):
                The text separator-1.
            sep2 (str):
                The text separator-2.
            roles (list[str]):
                Role names of the dialogue, roles[0] is the role of users while 
                roles[1] is the name of assistants.
            system_msg (str, **optional**):
                The system message that appears at the beginning.
            first_query_fn (function, **optional**):
                The function to process the first query, mainly for adding <img> marks.
            init_conv (list[list[str]]):
                The initial conversation. Each element is a list[str, str] where the first
                is the role name and the second is the message. 
            sep_style (str):
                The dialogue style. 
            alphabet_choice (str, **optional**):
                The option mark used for multiple-choice questions, defaults to "random"
            infer_method (str, "optional"):
                The inference method ("generation" or "likelihood")
            response_prefix (str, **optional**):
                The prefix text for the response of LVLM assistants, we use "The answer is"
                to help with multiple-choice questions.
                
        Returns:
            output (str):
                The constructed dialogue text.
        """

Here is an example of the \n-separated preprocessor:

proc = ConvSingleChoiceProcessor('\n', roles=['User', 'Bot'], first_query_fn=lambda x: "<image> "+x,
                                sep_style='one', infer_method=model_args['inference_method'], response_prefix='The answer is',
                                system_message="A chat between a curious human and an artificial intelligence assistant. The 
                                assistant gives helpful, detailed, and polite answers to the human's questions.")

The input sample is a json-style dict:

inputs = {'sample_id': '287626_3',
 'round_id': 3,
 'image': 'IMAGE_PATH.jpg',
 'question': 'Is there a cat in the image?',
 'answer': '2',
 'answer_options': ['yes', 'no', 'maybe'],
 'history': [{'from': 'human', 'value': 'Can you see the image? Options: (A) yes; (B) no'},
             {'from': 'assistant', 'value': 'The answer is (A) yes'}]
}

Therefore, the final content will be:

A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
User: <image> Can you see the image? Options: (A) yes; (B) no.\n
Bot: The answer is (A) yes\n
User: Is there a cat in the image? Options: (A) yes; (B) no; (C) maybe.\n
Bot:The answer is

For other supported sep_style, please refer to /path/to/ReForm-Eval/utils/preprocessors.py. init_conv can also be used to add <image> marks, if it is init_conv=[['User', "<image>"]], this means that a new conversation will be started.

User: <image>
User: ......
Bot: ......

Step 5: Add Model Loader

Implement the model loading function in /path/to/ReForm-Eval/models/interfaces/lynx_interface.py.

def get_lynx(model_config=None):
    model_args = {}
    # map the general input arguments to the model-specific arguments
    if model_config is not None:
        valid_args = ['model_name', 'device', 'half', 'inference_method']
        target_args = ['model_config', 'device', 'half', 'inference_method']
        for i, arg in enumerate(valid_args):
            if arg in model_config:
                model_args[target_args[i]] = model_config[arg]
    # configure the dialogue preprocessor
    proc = ConvSingleChoiceProcessor('\n', roles=['User', 'Bot'], \
                                     sep_style='one', infer_method=model_args['inference_method'], response_prefix='The answer is')
    return Lynx_Interface(**model_args), proc

Additionally, you should add the following codes in /path/to/ReForm-Eval/models/__init__.py.

    elif model_name == 'lynx':
        from .interfaces.lynx_interface import get_lynx
        return get_lynx(model_config)

Done!

Finally, you can use the following model arguments in the main entrance to evaluate your model!

--model lynx  --model_name models/interfaces/lynx/configs/LYNX.yaml

If you have trouble incorporating new models into our framework, please let us know through GitHub issues or emails. For more details about models and preprocessors, please refer to Prepare Models.

πŸš€ Evaluation

Our benchmark supports multi-GPU evaluation. If the half evaluation is set, the evaluation can be run on a single machine within CUDA memory of 24G on a single card for 7B models under limited equipment conditions.

Demo

We provide one example of running the benchmark test, using Lynx model for VisDial Evaluation.

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 run_eval.py \
    --model lynx  --model_name models/interfaces/lynx/configs/LYNX.yaml \
    --dataset_name VisDial --output_dir output/lynx/VisDial/test_generation/ \
    --per_gpu_eval_batch_size 4 --formulation SingleChoice \
    --infer_method generation --do_eval --half_evaluation  --dataset_duplication 1 \
    --in_context_sample --option_mark upper \
    --dataset_config build/configs/VisDial_val_v1.2.yaml \

The num of --nproc_per_node must be equal to the num of CUDA_VISIBLE_DEVICES. --output_dir is the path of output result. --formulation must be Generation, SingleChoice, OCROpenEnded or KIEOpenEnded. --infer_method must be generation or likelihood. If you infer in generation mode, you should use --in_context_sample to assist models to generate option marks for most questions. --dataset_config is the path of the dataset config file.

Parameters

All parameters used are listed below and you can modify any parameter to customize your evaluation settings.

def main():
    parser = argparse.ArgumentParser()
    # model-related parameters
    parser.add_argument('--model', type=str, default=None, help='the model family name')
    parser.add_argument('--model_name', type=str, default=None, help='the model name to load')
    parser.add_argument('--model_type', type=str, default=None, help='the model type to set')
    # dataset-related parameters
    parser.add_argument('--dataset_name', type=str, default=None, help='the dataset name to evaluate on')
    parser.add_argument('--formulation', type=str, default=None, help='the problem formulation to perform, must be in ("Generation", "SingleChoice")')
    parser.add_argument('--dataset_config', type=str, default=None, help='the config file path, using the default path without explicit ')
    parser.add_argument('--dataset_duplication', type=int, default=1, help='duplicate the sample for evaluating the stability')
    parser.add_argument('--in_context_sample', action='store_true', help='whether to provide in-context-learning samples')
    parser.add_argument('--capitalize', action='store_true', help='whether to capitalize the qa')
    # 0805 add
    parser.add_argument('--yesno_instruct', action='store_true', help='whether add "please answer yes or no" to the full instruct')
    parser.add_argument('--answer_space_instruct', action='store_true', help='whether add answer space to the full instruct')
    # running parameters
    parser.add_argument('--per_gpu_eval_batch_size', type=int, default=1, help='the batch size per GPU')
    parser.add_argument('--num_workers', type=int, default=4, help='workers in dataloader')
    parser.add_argument('--half_evaluation', action='store_true', help='whether to use half precision for evluation')
    # general evaluation setup
    parser.add_argument('--do_eval', action='store_true', help='whether to evluate the output.')
    parser.add_argument('--eval_stability', action='store_true', help='whether to evaluate the stability')
    # parameters for model generation
    parser.add_argument('--temperature', type=float, default=None, help='the temperature for generation')
    parser.add_argument('--max_new_tokens', type=int, default=None, help='max new tokens to generate')
    # parameters for likelihood measurement
    parser.add_argument('--likelihood_reduction', type=str, default=None, help='the reduction method for likelihood measurement')
    # parameters for SingleChoice problem
    parser.add_argument('--infer_method', type=str, default='generation', help='the inference method to use, must be in ["generation", "likelihood"]')
    parser.add_argument('--option_mark', type=str, default=None, help='the index mark for options in single-shoice questions, \
                        "number" for (1,2,3,4), "lower" for (a,b,c,d) while "upper" for (A,B,C,D)')
    # parameters for randomness control
    parser.add_argument('--random_instruct', action='store_true', help='whether to use random instructions')
    parser.add_argument('--shuffle_options', action='store_true', help='whether to shuffle options')
    # parameters for multi-round problem
    parser.add_argument('--options_in_history', action='store_true', help='whether to put options in history.')
    parser.add_argument('--online_multi_round', action='store_true', help='make online update to the history during dialog')
    parser.add_argument('--multi_round_eval', action='store_true', help='whether to evaluate multi-round performance')
    # output setup
    parser.add_argument('--output_dir', type=str, default='./output/', help='the path to save the output')
    # debug mode
    parser.add_argument('--dataset_debug', action='store_true', help='debug on the dataset setup')
    parser.add_argument('--dataset_subsample', type=int, default=None, help='only n sub-samples of the dataset')
    # core
    parser.add_argument('--core_eval', action='store_true', help='only eval on the core datasets')
    # hugging face
    parser.add_argument('--hf', action='store_true', help='whether to load the dataset directly from Hugging Face')
    parser.add_argument('--offline_hf', action='store_true', help='whether to load the Hugging Face data from the local path')
    args = parser.parse_args()

Model Usage

When running the evaluation, these model-related parameters must be applied for specific models.

Some models require additional forward_likelihood function, please refer to Likelihood-based White-Box Evaluation in Create Your Own Model Interface.

We only list a few examples of BLIP-2 and InstructBLIP here. For the remaining models, please refer to the Complete Model Usage.

BLIP-2 + InstructBLIP

# BLIP-2 flant5
--model blip2  --model_name blip2_t5  --model_type pretrain_flant5xl
# InstructBLIP flan-t5
--model blip2  --model_name blip2_t5_instruct  --model_type flant5xl
# InstructBLIP vicuna
--model blip2  --model_name blip2_vicuna_instruct  --model_type vicuna7b

You also have to put bert-base-uncased and google/flan-t5-xl folders on the root directory of our repository.

|-- ReForm-Eval
    |-- bert-base-uncased
    |-- google
        |-- flan-t5-xl
        ...
    |-- build
    |-- commands
    |-- metrics
    |-- models
    ...

If you load blip2_t5, you need to add the predict_class function in blip2_t5.py.

    def predict_class(
        self,
        samples,
        candidates,
        n_segments=1,
    ):
        # If candidates is a list of lists, each sample has its candidates, then we need to iterate one by one
        if type(candidates[0]) == list:
            results = []

            for i in range(samples["image"].size(0)):
                # add support for different prompts for different samples
                this_sample = {
                    "image": samples["image"][i].unsqueeze(0),
                    "prompt": samples["prompt"][i] if type(samples["prompt"]) == list else samples['prompt'],
                }

                if "text_input" in samples.keys():
                    this_sample["text_input"] = [samples["text_input"][i]]

                if 'context' in samples.keys():
                    this_sample['context'] = [samples["context"][i]]

                if 'history' in samples.keys():
                    this_sample['history'] = [samples["history"][i]]

                if 'caption' in samples.keys():
                    this_sample['caption'] = [samples["caption"][i]]

                this_result = self._predict_class(this_sample, candidates[i], n_segments)
                results.append(this_result)

            try:
                results = torch.cat(results, dim=0)
            except:
                results = [res.tolist()[0] for res in results]

            return results

        return self._predict_class(samples, candidates, n_segments)

    def _predict_class(
        self,
        samples,
        candidates,
        n_segments=1,
    ):
        """
        Args:
            samples (dict): A dictionary containing the following keys:
                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
                - prompt: the instruction
            candidates:
                (list): A list of candidate class names;
            n_segments:
                (int): Split the candidates into n_segments and predict one by one. This is useful when the number of candidates is too large.
        Returns:
            output_class: predicted class index
        """

        image = samples["image"]
        prompt = samples["prompt"]

        bs = image.size(0)

        if isinstance(prompt, str):
            prompt = [prompt] * bs
        else:
            assert len(prompt) == bs, "The number of prompts must be equal to the batch size."

        if "text_input" in samples.keys():
            if type(samples["text_input"][0]) == list:
                prompt = [prompt[i].format(*samples["text_input"][i]) for i in range(len(prompt))]
            else:
                prompt = [prompt[i].format(samples["text_input"][i]) for i in range(len(prompt))]

        # scienceqa
        if 'context' in samples.keys() and samples['context'] != '':
            prompt = [f'context: {samples["context"][i]}. {prompt[i]}' for i in range(len(prompt))]

        # visual dialog
        if 'history' in samples.keys() and samples['history'][0] != '':
            prompt = [f'dialog history: {samples["history"][i]}\n{prompt[i]}' for i in range(len(prompt))]

        if 'caption' in samples.keys() and samples['caption'][0] != '':
            prompt = [f'This image has the caption "{samples["caption"][i]}". {prompt[i]}' for i in range(len(prompt))]

        query_tokens = self.query_tokens.expand(bs, -1, -1)
 
        if image.dim() == 5:
            inputs_t5, atts_t5 = [], []
            for j in range(image.size(2)):
                this_frame = image[:,:,j,:,:]
                with self.maybe_autocast():
                    frame_embeds = self.ln_vision(self.visual_encoder(this_frame))
                    frame_atts = torch.ones(frame_embeds.size()[:-1], dtype=torch.long).to(image.device)

                frame_query_output = self.Qformer.bert(
                    query_embeds=query_tokens,
                    encoder_hidden_states=frame_embeds,
                    encoder_attention_mask=frame_atts,
                    return_dict=True,
                )

                frame_inputs_t5 = self.t5_proj(frame_query_output.last_hidden_state[:,:query_tokens.size(1),:])
                frame_atts_t5 = torch.ones(frame_inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
                inputs_t5.append(frame_inputs_t5)
                atts_t5.append(frame_atts_t5)
            inputs_t5 = torch.cat(inputs_t5, dim=1)
            atts_t5 = torch.cat(atts_t5, dim=1)
        else:
            with self.maybe_autocast():
                image_embeds = self.ln_vision(self.visual_encoder(image))
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)

            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            inputs_t5 = self.t5_proj(query_output.last_hidden_state[:,:query_tokens.size(1),:])
            atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)

        input_tokens = self.t5_tokenizer(
            prompt, padding="longest", return_tensors="pt"
        ).to(image.device)
        output_tokens = self.t5_tokenizer(
            candidates, padding="longest", return_tensors="pt"
        ).to(image.device)

        encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)

        n_cands = len(candidates)

        with self.maybe_autocast(dtype=torch.bfloat16):
            inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
            inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)

            encoder_outputs = self.t5_model.encoder(
                inputs_embeds=inputs_embeds,
                attention_mask=encoder_atts,
            )

            all_losses = []
            for n in range(n_segments):
                seg_len = n_cands // n_segments
                if n == (n_segments - 1):
                    seg_len = n_cands - seg_len * (n_segments - 1)

                # this_encoder_outputs = copy.deepcopy(encoder_outputs)
                this_encoder_outputs = BaseModelOutput(
                    last_hidden_state=encoder_outputs[0].clone(),
                )

                this_encoder_outputs['last_hidden_state'] = this_encoder_outputs[0].repeat_interleave(seg_len, dim=0)
                this_encoder_atts = encoder_atts.repeat_interleave(seg_len, dim=0)

                start_i = n * (n_cands // n_segments)
                end_i = start_i + seg_len
                this_output_tokens_ids = output_tokens.input_ids[start_i:end_i].repeat(bs, 1)
                this_output_tokens_atts = output_tokens.attention_mask[start_i:end_i].repeat(bs, 1)

                this_targets = this_output_tokens_ids.masked_fill(this_output_tokens_ids == self.t5_tokenizer.pad_token_id, -100)

                outputs = self.t5_model(
                    encoder_outputs=this_encoder_outputs,
                    attention_mask=this_encoder_atts,
                    decoder_attention_mask=this_output_tokens_atts,
                    return_dict=True,
                    labels=this_targets,
                    reduction="none",
                )
                loss = outputs.loss

                loss = loss.reshape(bs, seg_len)
                # output_class_ranks = torch.argsort(loss, dim=-1)
                all_losses.append(loss)

            all_losses = torch.cat(all_losses, dim=-1)
            output_class_ranks = torch.argsort(all_losses, dim=-1)

        return output_class_ranks

Then, you should run the following command to implement the modification.

cd models/LAVIS
pip install e .

Data Usage

For data-related parameters, we list required parameters of different tasks for comprehensive evaluation.

Coarse-Grained Perception

Coarse-grained perception (CG) is the ability to recognize the overall layout and main objects at the image level.

Flowers102
--dataset_name Flowers102 --formulation SingleChoice --dataset_config build/configs/ImageClassification_flowers102_val.yaml
CIFAR10
--dataset_name CIFAR10 --formulation SingleChoice --dataset_config build/configs/ImageClassification_cifar10_val.yaml
ImageNet-1K
--dataset_name ImageNet-1K --formulation SingleChoice --dataset_config build/configs/ImageClassification_imagenet1k_val.yaml
Pets37
--dataset_name Pets37 --formulation SingleChoice --dataset_config build/configs/ImageClassification_pets37_val.yaml
VizWiz-yesno
--dataset_name VizWiz --formulation SingleChoice --dataset_config build/configs/ImageQuality_vizwiz_yesNo_val.yaml
VizWiz-singleChoice
--dataset_name VizWiz --formulation SingleChoice --dataset_config build/configs/ImageQuality_vizwiz_singleChoice_val.yaml
TDIUC-Sport
--dataset_name VizWiz --formulation SingleChoice --dataset_config build/configs/ImageQuality_vizwiz_singleChoice_val.yaml
TDIUC-Scene
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_scene.yaml
MEDIC
--dataset_name MEDIC --formulation SingleChoice --dataset_config build/configs/DisasterType_val.yaml

Fine-Grained Perception

Fine-grained perception (FG) requires detailed sensing at the object level.

MSCOCO-MCI
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/MulticlassIdentification_val.yaml
MSCOCO-GOI
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/GroundedObjIdentification_val.yaml
MSCOCO-MOS
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/MissingObjectSelection_val.yaml
TDIUC-Color
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_color.yaml
TDIUC-Utility
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_utility.yaml
TDIUC-Position
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_position.yaml
TDIUC-Detection
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_detection.yaml
TDIUC-Counting
--dataset_name TDIUC --formulation SingleChoice --dataset_config build/configs/TDIUC_counting.yaml
RefCOCO
--dataset_name RefCOCO --formulation SingleChoice --dataset_config build/configs/ReferringExpression_val.yaml
MSCOCO-OC
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/ObjectCounting_mscoco_val.yaml

Visually Grounded Reasoning

A reliable LVLM is supposed to perform reasoning based on multi-modal contextual information. In order to assess such capability, we adopt the commonly applied visual question answering (VQA) task and its variant, knowledge-based visual question answer (K-VQA), which further requires models to utilize internally stored knowledge.

VQA v2
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_vqa_v2_val.yaml
GQA
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_gqa_val_v2.0.yaml
Whoops
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_whoops_val.yaml
OK-VQA
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_okvqa_val.yaml
ScienceQA
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_scienceqa_val_v2.0.yaml
VizWiz
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_vizwiz_val_v2.0.yaml
ViQuAE
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_viquae_val.yaml
K-ViQuAE
--dataset_name KVQA --formulation SingleChoice --dataset_config build/configs/KVQA_viquae_val.yaml
A-OKVQA
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_aokvqa_val.yaml
A-OKVQRA
--dataset_name VQRA --formulation SingleChoice --dataset_config build/configs/VQRA_aokvqa_val.yaml
A-OKVQAR
--dataset_name VQAR --formulation SingleChoice --dataset_config build/configs/VQAR_aokvqa_val.yaml
ImageNetVC
--dataset_name VQA --formulation SingleChoice --dataset_config build/configs/VQA_imagenetvc_val.yaml

Spatial Understanding

Spatial understanding is the key to the real-life application of LVLMs on robots. This task requires a comprehensive understanding of both the object-object and object-observer relationship so as to make reasonable behaviors.

CLEVR
--dataset_name CLEVR --formulation SingleChoice --dataset_config build/configs/Spatial_clevr_val.yaml
VSR
--dataset_name VSR --formulation SingleChoice --dataset_config build/configs/Spatial_vsr_val.yaml
MP3D
--dataset_name MP3D --formulation SingleChoice --dataset_config build/configs/Spatial_mp3d_val.yaml

Multi-Turn Dialogue

ReForm-Eval evaluates the performance of LVLMs in multi-turn dialogues.

VQA-MT
--dataset_name VisDial --formulation SingleChoice --dataset_config build/configs/VQA_vqa_MultiRound_val.yaml --online_multi_round --num_workers 0
VisDial
--dataset_name VisDial --formulation SingleChoice --dataset_config build/configs/VisDial_val_v1.2.yaml --online_multi_round --num_workers 0

Please refer to Online Multi-round Dialogue for the details of the setup of online multi-round dialogues.

Cross-Modal Inference

We consider two tasks: image-text matching (ITM) requires models to measure the cross-modal similarities and visual entailment (VE) demands models to check whether the information is entailed across modalities.

MSCOCO-ITM
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/ImageTextMatching_val.yaml
MSCOCO-ITS
--dataset_name MSCOCO --formulation SingleChoice --dataset_config build/configs/ImageTextSelection_val.yaml
WikiHow
--dataset_name WikiHow --formulation SingleChoice --dataset_config build/configs/TemporalOrdering_val.yaml
Winoground
--dataset_name CaptionSelection --formulation SingleChoice --dataset_config build/configs/CaptionSelection_winoground_val.yaml
SNLI-VE
--dataset_name SNLI-VE --formulation SingleChoice --dataset_config build/configs/VisualEntailment_val.yaml
MOCHEG
--dataset_name MCV  --formulation SingleChoice --dataset_config build/configs/MCV_mocheg_val.yaml

Scene Text Perception

Scene text perception enables LVLMs to identify, understand, and perform inference based on text in images.

Grounded IC15
--dataset_name IC15 --formulation OCROpenEnded --dataset_config build/configs/GroundOCR_ic15_val.yaml
IC15
--dataset_name IC15 --formulation OCROpenEnded --dataset_config build/configs/OCR_ic15_val.yaml
Grounded COCO-Text
--dataset_name COCO_text --formulation OCROpenEnded --dataset_config build/configs/GroundOCR_cocotext_val.yaml
COCO-Text
--dataset_name COCO_text --formulation OCROpenEnded --dataset_config build/configs/OCR_cocotext_val.yaml
Grounded TextOCR
--dataset_name TextOCR --formulation OCROpenEnded --dataset_config build/configs/GroundOCR_textocr_val.yaml
TextOCR
--dataset_name TextOCR --formulation OCROpenEnded --dataset_config build/configs/OCR_textocr_val.yaml
CUTE80
--dataset_name CUTE80 --formulation OCROpenEnded --dataset_config build/configs/OCR_cute80_val.yaml
IIIT5K
--dataset_name IIIT5K --formulation OCROpenEnded --dataset_config build/configs/OCR_iiit5k_val.yaml
WordArt
--dataset_name WordArt --formulation OCROpenEnded --dataset_config build/configs/OCR_wordart_val.yaml
FUNSD
--dataset_name FUNSD --formulation KIEOpenEnded --dataset_config build/configs/KIE_funsd_val.yaml
POIE
--dataset_name POIE --formulation OCROpenEnded --dataset_config build/configs/KIE_poie_val.yaml
SROIE
--dataset_name SROIE --formulation OCROpenEnded --dataset_config build/configs/KIE_sroie_val.yaml
TextVQA
--dataset_name OCR --formulation OCROpenEnded --dataset_config build/configs/OCR_textvqa_val.yaml
DocVQA
--dataset_name OCR --formulation OCROpenEnded --dataset_config build/configs/OCR_docvqa_val.yaml
OCR-VQA
--dataset_name OCR --formulation OCROpenEnded --dataset_config build/configs/OCR_ocrvqa_val.yaml

Visual Description

Visual description is an inherent capability of LVLMs as generative models.

MSCOCO
--dataset_name MSCOCO --formulation Generation --dataset_config build/configs/Caption_MSCOCO_val.yaml
TextCaps
--dataset_name TextCaps --formulation Generation --dataset_config build/configs/Caption_TextCaps_val.yaml
NoCaps
--dataset_name NoCaps --formulation Generation --dataset_config build/configs/Caption_NoCaps_val.yaml
Flickr30K
--dataset_name Flickr30K --formulation Generation --dataset_config build/configs/Caption_Flickr30K_val.yaml

Output Result

The output json file is generated in your --output_dir path, and you can dircetly look up the corresponding json file for the final result. You can also run command by ipython in the terminal:

import json
res = json.load(open('/path/to/YOUR_PREDICTION_FILE.json')) #load the output json file
res[0] #res[n], n can be any number within the generated results

πŸ–‹ Citation

If ReForm-Eval has been beneficial to your research and work, please cite our work using the following format:

@misc{li2023reformeval,
      title={ReForm-Eval: Evaluating Large Vision Language Models via Unified Re-Formulation of Task-Oriented Benchmarks}, 
      author={Zejun Li and Ye Wang and Mengfei Du and Qingwen Liu and Binhao Wu and Jiwen Zhang and Chengxing Zhou and Zhihao Fan and Jie Fu and Jingjing Chen and Xuanjing Huang and Zhongyu Wei},
      year={2023},
      eprint={2310.02569},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

🀝 Acknowledgements

We thank MME, MMBench, LVLM-eHub, M3IT and other repositories that have made great contributions to multi-modal large model evaluation. In addition, we are also very grateful that many LVLMs can be open sourced and participate in our evaluation, enriching results of our benchmarks.

πŸ” Related Projects