Skip to content

Commit

Permalink
Merge pull request #1012 from FlowiseAI/feature/SimilarityThresholdRe…
Browse files Browse the repository at this point in the history
…triever

Feature/Similarity Threshold Retriever
  • Loading branch information
HenryHengZJ authored Oct 6, 2023
2 parents 8c90c1a + 1cb991a commit 7d6cb18
Show file tree
Hide file tree
Showing 2 changed files with 112 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import { VectorStore } from 'langchain/vectorstores/base'
import { INode, INodeData, INodeParams, INodeOutputsValue } from '../../../src/Interface'
import { handleEscapeCharacters } from '../../../src'
import { ScoreThresholdRetriever } from 'langchain/retrievers/score_threshold'

class SimilarityThresholdRetriever_Retrievers implements INode {
label: string
name: string
version: number
description: string
type: string
icon: string
category: string
baseClasses: string[]
inputs: INodeParams[]
outputs: INodeOutputsValue[]

constructor() {
this.label = 'Similarity Score Threshold Retriever'
this.name = 'similarityThresholdRetriever'
this.version = 1.0
this.type = 'SimilarityThresholdRetriever'
this.icon = 'similaritythreshold.svg'
this.category = 'Retrievers'
this.description = 'Return results based on the minimum similarity percentage'
this.baseClasses = [this.type, 'BaseRetriever']
this.inputs = [
{
label: 'Vector Store',
name: 'vectorStore',
type: 'VectorStore'
},
{
label: 'Minimum Similarity Score (%)',
name: 'minSimilarityScore',
description: 'Finds results with at least this similarity score',
type: 'number',
default: 80,
step: 1
},
{
label: 'Max K',
name: 'maxK',
description: `The maximum number of results to fetch`,
type: 'number',
default: 20,
step: 1
},
{
label: 'K Increment',
name: 'kIncrement',
description: `How much to increase K by each time. It'll fetch N results, then N + kIncrement, then N + kIncrement * 2, etc.`,
type: 'number',
default: 2,
step: 1
}
]
this.outputs = [
{
label: 'Similarity Threshold Retriever',
name: 'retriever',
baseClasses: this.baseClasses
},
{
label: 'Document',
name: 'document',
baseClasses: ['Document']
},
{
label: 'Text',
name: 'text',
baseClasses: ['string', 'json']
}
]
}

async init(nodeData: INodeData, input: string): Promise<any> {
const vectorStore = nodeData.inputs?.vectorStore as VectorStore
const minSimilarityScore = nodeData.inputs?.minSimilarityScore as number
const maxK = nodeData.inputs?.maxK as string
const kIncrement = nodeData.inputs?.kIncrement as string

const output = nodeData.outputs?.output as string

const retriever = ScoreThresholdRetriever.fromVectorStore(vectorStore, {
minSimilarityScore: minSimilarityScore ? minSimilarityScore / 100 : 0.9,
maxK: maxK ? parseInt(maxK, 10) : 100,
kIncrement: kIncrement ? parseInt(kIncrement, 10) : 2
})

if (output === 'retriever') return retriever
else if (output === 'document') return await retriever.getRelevantDocuments(input)
else if (output === 'text') {
let finaltext = ''

const docs = await retriever.getRelevantDocuments(input)

for (const doc of docs) finaltext += `${doc.pageContent}\n`

return handleEscapeCharacters(finaltext, false)
}

return retriever
}
}

module.exports = { nodeClass: SimilarityThresholdRetriever_Retrievers }
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit 7d6cb18

Please sign in to comment.