Skip to content

PysynthMRI is a python open-source tool which provides a user-friendly interface to synthesize contrast weighted images.

License

Notifications You must be signed in to change notification settings

FiRMLAB-Pisa/pySynthMRI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

98 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Contributors Forks Stargazers Issues License


PysynthMRI

Python Tool for Synthetic MRI
Explore the docs »

Report Bug · Request Feature

Table of Contents
  1. About
  2. Getting Started
  3. Usage
  4. Example Data
  5. Citation
  6. License

About

pysynthmri-screenshot PysynthMRI is a python open-source tool which provides a user-friendly interface to synthesize contrast weighted images. It allows the user to load quantitative maps and adjust virtual scanner parameters to obtain, in real time, the best images.
If you use this software, please indicate the following reference:

Peretti, L.; Donatelli, G.; Cencini, M.; Cecchi, P.; Buonincontri, G.; Cosottini, M.; Tosetti, M.; Costagli, M. Generating Synthetic Radiological Images with PySynthMRI: An Open-Source Cross-Platform Tool. Tomography 2023, 9, 1723-1733. https://doi.org/10.3390/tomography9050137

Getting Started with Windows

WINDOWS Installation

  1. Download Release from: https://github.com/FiRMLAB-Pisa/pySynthMRI/releases/download/v1.0.0/pySynthMRI-v1.0.0-windows-executable.zip
  2. unzip pySynthMRI-v1.0.0.zip
  3. run PySynthMRI.exe

Getting Started with Linux or MacOS

These instructions will give you a copy of the project up and running on your local machine, using Linux or MacOS
Make sure you have Python version >= 3.6.

Installation

  1. Clone the repository:

    git clone https://github.com/FiRMLAB-Pisa/pySynthMRI.git
  2. Create a Python Virtual Environment

  3. Install required libraries:

    pip install -r requirements.txt

Usage

Configuration

In order to correctly execute pySynthMRI, config.json file need to be created. A default configuration file (config-sample.json) is provided for reference.
We suggest to copy sample file:

   cp config-sample.json config.json

Below part of the configuration file is reported for help.

{
    "synthetic_images": {
        "FS15T": {                                # Name of preset (multiple presets can exists)
            "FSE": {                              # Name of signal model
                "title": "T2w - Fast Spin Echo",  # Title of signal model
                "equation": "PD*exp(-TE/T2)",     # Model equation
                "parameters": {                   # List of parameters json object
                    "TE": {                       # Name of parameter
                        "label": "TE [ms]",       # Shown label
                        "value": 80,              # Default value
                        "min": 1,                 # Min value
                        "max": 100,               # Max value
                        "step": 1                 # Slider/Mouse parameter step 
                    }
                },
                "series_number": 9001             # [optional] Add to SeriesNumber DICOM tag (0020,0011)
            },
[...]
    "quantitative_maps": {                        # Quantitative maps that can be loaded
        "T1": {                                   # Name of map
            "file_name": "qmap_t1"                # substring filename (used if autoload qmaps)
        },
        "T2": {
            "file_name": "qmap_t2"
        },
        "PD": {
            "file_name": "qmap_pd"
        }
    },
[...]
}

Launch PySynthMRI

You can launch PySynthMRI running launcher.py in your Python IDE or via operating system command-line or terminal:

python pySynthMRI.py

Default Signal Models

Custom signal models can be added at runtime or using the configuration file.
To facilitate the user, PySynthMRI contains a set of default contrast images in its configuration file:

Title Equation Description
FSE PD * ((1 - exp(-TR/T1))*exp(-TE/T2)) T2w - Fast Spin Echo
GRE PD * ((1 - exp(-TR/T1))*exp(-TE/T2) T1w - Gradient Echo
FLAIR abs(PD) * exp(-TSAT/T1)*exp(-TE/T2)*(1-2*exp(-TI/T1)) T2w - Fluid Attenuated Inversion Recover
MP2RAGE 1-2*exp(-TI/T1) T1w - Magnetization-Prepared 2 RApid Gradient Echoes
DIR PD * (1 - 2*exp(-TI_2/T1) + 2*exp(-(TI_1+TI_2)/T1) - exp(-TR/T1)) * (exp(-TE/T2)) 3D Double Inversion Revovery
TBE PD * (1-2*exp(-TI/T1)) * (1-exp(-TR/T1)) * exp(-TE/T2) Tissue Border Enhancement by inversion recovery

Example Data

In order to test the software with in-vivo data, we provide downloadable example files at the following link: test_data.zip. The zip file contains 3 quantitative, anonymized maps.

Filename Quantitative Map
qmap_t1_bet.nii T1
qmap_t2_bet.nii T2
qmap_pd_bet.nii PD

Citation

If you use this software, please indicate the following reference:

Peretti, L.; Donatelli, G.; Cencini, M.; Cecchi, P.; Buonincontri, G.; Cosottini, M.; Tosetti, M.; Costagli, M. Generating Synthetic Radiological Images with PySynthMRI: An Open-Source Cross-Platform Tool. Tomography 2023, 9, 1723-1733. https://doi.org/10.3390/tomography9050137

or use the bibetex file cite-pysynthmri.bib provided.

License

PySynthMRI is distributed under GPL-v3.0 License. See LICENSE.txt for more information.

About

PysynthMRI is a python open-source tool which provides a user-friendly interface to synthesize contrast weighted images.

Resources

License

Stars

Watchers

Forks

Packages

No packages published