forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[dygraph sharding] Overlap the reduce and the caculation for sharding…
… stage 2. (PaddlePaddle#46495)
- Loading branch information
Showing
4 changed files
with
294 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
241 changes: 241 additions & 0 deletions
241
...addle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage2_comm_overlap.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,241 @@ | ||
# -*- coding: UTF-8 -*- | ||
|
||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
import shutil | ||
import numpy as np | ||
import argparse | ||
import tempfile | ||
import ast | ||
import time | ||
import paddle | ||
import paddle.fluid as fluid | ||
from paddle.fluid.dygraph.nn import Linear | ||
from paddle.distributed import fleet | ||
from paddle.fluid.dygraph import nn | ||
from paddle.fluid.framework import _test_eager_guard | ||
|
||
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2 import GroupShardedOptimizerStage2 | ||
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage2 import GroupShardedStage2 | ||
|
||
seed = 2022 | ||
epoch = 2 | ||
linear_size = 1000 | ||
|
||
np.random.seed(seed) | ||
paddle.seed(seed) | ||
|
||
|
||
class MLP(fluid.Layer): | ||
|
||
def __init__(self, linear_size=1000, param_attr=None, bias_attr=None): | ||
super(MLP, self).__init__() | ||
|
||
self._linear1 = Linear(linear_size, linear_size) | ||
self._linear2 = Linear(linear_size, linear_size) | ||
self._linear3 = Linear(linear_size, 10) | ||
|
||
def forward(self, inputs): | ||
y = self._linear1(inputs) | ||
y = self._linear2(y) | ||
y = self._linear3(y) | ||
return y | ||
|
||
|
||
def reader_decorator(linear_size=1000): | ||
|
||
def __reader__(): | ||
for _ in range(100): | ||
img = np.random.rand(linear_size).astype('float32') | ||
label = np.ones(1).astype('int64') | ||
yield img, label | ||
|
||
return __reader__ | ||
|
||
|
||
def optimizer_setting(model, use_pure_fp16, opt_group=False): | ||
clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0) | ||
optimizer = paddle.optimizer.AdamW(parameters=[{ | ||
"params": model.parameters(), | ||
}] if opt_group else model.parameters(), | ||
learning_rate=0.001, | ||
weight_decay=0.00001, | ||
grad_clip=clip, | ||
multi_precision=use_pure_fp16) | ||
|
||
return optimizer | ||
|
||
|
||
def train_mlp(model, | ||
sharding_stage, | ||
batch_size=100, | ||
use_pure_fp16=False, | ||
accumulate_grad=False, | ||
opt_group=False, | ||
save_model=False, | ||
test_minimize=False): | ||
if sharding_stage != "dp": | ||
group = paddle.distributed.new_group([0, 1], backend="nccl") | ||
if opt_group: | ||
optimizer = optimizer_setting(model=model, | ||
use_pure_fp16=use_pure_fp16, | ||
opt_group=opt_group) | ||
else: | ||
optimizer = optimizer_setting(model=model, use_pure_fp16=use_pure_fp16) | ||
|
||
if sharding_stage == 2: | ||
optimizer = GroupShardedOptimizerStage2( | ||
params=optimizer._parameter_list, optim=optimizer, group=group) | ||
model = GroupShardedStage2(model, | ||
optimizer, | ||
group=group, | ||
buffer_max_size=2**21) | ||
model._set_comm_overlap(True) | ||
else: | ||
model = paddle.DataParallel(model) | ||
|
||
# check optimizer.minimize() error | ||
if test_minimize: | ||
try: | ||
optimizer.minimize() | ||
except: | ||
print( | ||
"====== Find sharding_stage2_optimizer.minimize() error ======") | ||
return | ||
|
||
train_reader = paddle.batch(reader_decorator(), | ||
batch_size=batch_size, | ||
drop_last=True) | ||
|
||
train_loader = paddle.io.DataLoader.from_generator(capacity=32, | ||
use_double_buffer=True, | ||
iterable=True, | ||
return_list=True, | ||
use_multiprocess=True) | ||
train_loader.set_sample_list_generator(train_reader) | ||
|
||
if sharding_stage == 2: | ||
model.to(device="gpu") | ||
|
||
for eop in range(epoch): | ||
model.train() | ||
|
||
for batch_id, data in enumerate(train_loader()): | ||
img, label = data | ||
label.stop_gradient = True | ||
img.stop_gradient = True | ||
|
||
out = model(img) | ||
loss = paddle.nn.functional.cross_entropy(input=out, label=label) | ||
|
||
avg_loss = paddle.mean(x=loss.cast(dtype=paddle.float32)) | ||
if batch_size == 20: | ||
avg_loss = avg_loss / 5 | ||
avg_loss.backward() | ||
|
||
if not accumulate_grad: | ||
optimizer.step() | ||
optimizer.clear_grad() | ||
|
||
if accumulate_grad: | ||
optimizer.step() | ||
optimizer.clear_grad() | ||
|
||
if save_model: | ||
return model, optimizer | ||
return model.parameters() | ||
|
||
|
||
def test_dp_stage2(): | ||
paddle.distributed.init_parallel_env() | ||
mlp = MLP() | ||
state_dict = mlp.state_dict() | ||
mlp1 = MLP() | ||
mlp2 = MLP() | ||
mlp3 = MLP() | ||
mlp4 = MLP() | ||
mlp5 = MLP() | ||
mlp6 = MLP() | ||
mlp7 = MLP() | ||
mlp1.set_state_dict(state_dict) | ||
mlp2.set_state_dict(state_dict) | ||
mlp3.set_state_dict(state_dict) | ||
mlp4.set_state_dict(state_dict) | ||
mlp5.set_state_dict(state_dict) | ||
mlp6.set_state_dict(state_dict) | ||
mlp7.set_state_dict(state_dict) | ||
|
||
# DP VS stage2 | ||
dp_params = train_mlp(mlp1, | ||
sharding_stage="dp", | ||
use_pure_fp16=False, | ||
opt_group=False) | ||
stage2_params = train_mlp(mlp2, | ||
sharding_stage=2, | ||
use_pure_fp16=False, | ||
opt_group=False) | ||
for i in range(len(dp_params)): | ||
np.testing.assert_allclose(dp_params[i].numpy(), | ||
stage2_params[i].numpy(), | ||
rtol=1e-6) | ||
|
||
# stage2 accumulate grad | ||
stage2_params = train_mlp(mlp3, sharding_stage=2, accumulate_grad=True) | ||
stage2_accumulate_grad = train_mlp(mlp4, | ||
sharding_stage=2, | ||
batch_size=20, | ||
accumulate_grad=True) | ||
for i in range(len(stage2_params)): | ||
np.testing.assert_allclose(stage2_params[i].numpy(), | ||
stage2_accumulate_grad[i].numpy(), | ||
rtol=1e-5, | ||
atol=1e-5) | ||
|
||
# stage2 param list VS param group | ||
stage2_params = train_mlp(mlp5, | ||
sharding_stage=2, | ||
use_pure_fp16=False, | ||
opt_group=True) | ||
for i in range(len(dp_params)): | ||
np.testing.assert_allclose(dp_params[i].numpy(), | ||
stage2_params[i].numpy(), | ||
rtol=1e-6) | ||
|
||
# save/load model | ||
output_dir = tempfile.mkdtemp() | ||
model_file = os.path.join(output_dir, "model.pdmodel") | ||
optimizer_file = os.path.join(output_dir, "model.pdopt") | ||
model_stage2, optimizer_stage2 = train_mlp(mlp6, | ||
sharding_stage=2, | ||
use_pure_fp16=False, | ||
opt_group=False, | ||
save_model=True) | ||
paddle.save(model_stage2.state_dict(), model_file) | ||
paddle.save(optimizer_stage2.state_dict(), optimizer_file) | ||
m_state_dict = paddle.load(model_file) | ||
opt_state_dict = paddle.load(optimizer_file) | ||
model_stage2.set_state_dict(m_state_dict) | ||
optimizer_stage2.set_state_dict(opt_state_dict) | ||
shutil.rmtree(output_dir) | ||
|
||
# check optimizer.minimize() error | ||
train_mlp(mlp7, sharding_stage=2, test_minimize=True) | ||
return | ||
|
||
|
||
if __name__ == '__main__': | ||
with _test_eager_guard(): | ||
test_dp_stage2() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters