Tools for implementing Deep.piste study.
On windows:
You may need to install "Visual C++ Redistributable Packages for Visual Studio 2013" Microsoft C++ Build Tools.
On Ubuntu:
sudo apt-get install python3-tk
pip install deep-piste
- Download source code
git clone https://github.com/Epiconcept-Paris/deidcm.git
git clone https://github.com/Epiconcept-Paris/deep.piste.git
- Create and activate a virtual environment
cd deep.piste/
python3 -m venv env
. env/bin/activate
- Install deidcm
cd ../deidcm
pip install -e .
- Install deep.piste
cd ../deep.piste
pip install -e .
- Checking deidcm installation
Open a python interpreter and try to deidentify a dicom file:
from deidcm.dicom.deid_mammogram import deidentify_image_png
deidentify_image_png(
"/path/to/mammogram.dcm",
"/path/to/processed/output-folder",
"output-filename"
)
- Checking deep.piste installation
When writing the following command, you should be able to see the help menu:
>>> python3 -m dpiste -h
usage: __main__.py [-h] {extract,transform,export,backup} ...
positional arguments:
{extract,transform,export,backup}
extract Invoke initial extractions commands
transform Perform transformation on input data
export Sending data
backup Back up data
options:
-h, --help show this help message and exit
pip install -e .[quality-tools]
Run all tests
pytest
- Run test coverage
coverage run --omit="*/test*,*/deidcm/*" -m pytest
- Visualize report in terminal
coverage report -i
Format your files with python3 -m autopep8 --in-place file/to/format
Lint your files with python3 -m pylint file/to/lint