Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add logging #140

Merged
merged 11 commits into from
Jun 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
75 changes: 67 additions & 8 deletions emote/memory/memory.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,16 +5,20 @@
of the sequence builder is to consume individual timesteps per agent and collate
them into episodes before submission into the memory.
"""
from __future__ import annotations

import logging
import os
import time
import warnings

from collections import defaultdict
from collections.abc import Iterable
from dataclasses import dataclass, field
from typing import Callable, Dict, List, Mapping, Optional, Tuple, Union

import torch

from torch.utils.tensorboard import SummaryWriter

from emote.callback import Callback
Expand Down Expand Up @@ -191,31 +195,79 @@ def add(
self.completed_episodes += len(observations) - len(responses)

for obs in observations.values():
# todo: handle info lists how?

if obs.metadata is None:
continue

# all infos for agents are windowed
for k, v in obs.metadata.info.items():
if k.startswith("histogram:"):
continue

self.log_windowed_scalar(k, v)
self.report(obs.metadata.info, obs.metadata.info_lists)

if (self._counter % self._log_interval) == 0:
self._end_cycle()
self._counter = 0

return self._inner.add(observations, responses)

def report(
self,
metrics: dict[str, float],
metrics_lists: dict[str, list[float]],
):

for key, value in metrics.items():
if key.startswith("histogram:"):
self.log_histogram(key[10:], value)
else:
self.log_windowed_scalar(key, value)

for key, value in metrics_lists.items():
if key.startswith("histogram:"):
self.log_histogram(key[10:], value)
else:
self.log_windowed_scalar(key, value)

def get_report(
self, keys: List[str]
) -> Tuple[dict[str, Union[int, float, list[float]]], dict[str, list[float]]]:
keys = set(keys)
out = {}
out_lists = {}

for key in keys:
if key.startswith("histogram:") and key[10:] in self.hist_logs:
window = self.hist_logs[key[10:]]
out[key] = sum(window) / len(window)
elif key in self.windowed_scalar:
window = self.windowed_scalar[key]
out_lists[key] = list(window)
out[key] = sum(window) / len(window)
out[f"{key}/cumulative"] = self.windowed_scalar_cumulative[key]

return out, out_lists

def _end_cycle(self):
now_time = time.perf_counter()
cycle_time = now_time - self._cycle_start_time
cycle_infs = self.completed_inferences - self._cycle_start_infs
inf_step = self.completed_inferences
self.log_scalar("training/inf_per_sec", cycle_infs / cycle_time)
self.log_scalar("episode/completed", self.completed_episodes)

if "episode/reward" in self.windowed_scalar:
rewards = self.windowed_scalar["episode/reward"]
average_reward = sum(rewards) / len(rewards)
rewards_tensor = torch.Tensor(rewards)

self._writer.add_scalar(
"env_vs_episode/reward", average_reward, self.completed_episodes
)
self._writer.add_histogram(
"episode/reward_distribution", rewards_tensor, inf_step
)
self._writer.add_histogram(
"env_vs_episode/reward_distribution",
rewards_tensor,
self.completed_episodes,
)

suffix = "inf_step"
for k, v in self.scalar_logs.items():
if suffix:
Expand Down Expand Up @@ -254,6 +306,13 @@ def _end_cycle(self):
k = "/".join(k_split)
self._writer.add_video(k, video_array, inf_step, fps=fps, walltime=None)

for k, v in self.hist_logs:
if suffix:
k_split = k.split("/")
k_split[0] = k_split[0] + "_" + suffix
k = "/".join(k_split)
self._writer.add_histogram(k, v, inf_step)

time_since_start = time.monotonic() - self._start_time

self._writer.add_scalar(
Expand Down
33 changes: 27 additions & 6 deletions emote/mixins/logging.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from collections import deque
from collections.abc import Iterable
from typing import Any, Dict, Tuple, Union

import numpy as np
Expand Down Expand Up @@ -33,7 +34,11 @@ def log_scalar(self, key: str, value: Union[float, torch.Tensor]):
else:
self.scalar_logs[key] = value

def log_windowed_scalar(self, key: str, value: Union[float, torch.Tensor]):
def log_windowed_scalar(
self,
key: str,
value: Union[float, torch.Tensor, Iterable[Union[torch.Tensor, float]]],
):
"""Log scalars using a moving window average.

By default this will use `default_window_length` from the constructor as the window
Expand All @@ -54,10 +59,14 @@ def log_windowed_scalar(self, key: str, value: Union[float, torch.Tensor]):
self.windowed_scalar[key] = deque(maxlen=length)
self.windowed_scalar_cumulative[key] = 0

if isinstance(value, torch.Tensor):
self.windowed_scalar[key].append(value.item())
if isinstance(value, Iterable):
val = value.numpy() if isinstance(value, torch.Tensor) else value
self.windowed_scalar[key].extend(val)
self.windowed_scalar_cumulative[key] += sum(val)
else:
self.windowed_scalar[key].append(value)
val = value.item() if isinstance(value, torch.Tensor) else value
self.windowed_scalar[key].append(val)
self.windowed_scalar_cumulative[key] += val

def log_image(self, key: str, value: torch.Tensor):
"""Use log_image to periodically log image data."""
Expand All @@ -68,8 +77,20 @@ def log_video(self, key: str, value: Tuple[np.ndarray, int]):
"""Use log_scalar to periodically log scalar data."""
self.video_logs[key] = value

def log_histogram(self, key: str, value: torch.Tensor):
self.hist_logs[key] = value.detach()
def log_histogram(
self,
key: str,
value: Union[torch.Tensor, float, Iterable[Union[torch.Tensor, float]]],
):
if isinstance(value, Iterable):
self.hist_logs[key] = (
value.detach() if isinstance(value, torch.Tensor) else value
)
else:
if key not in self.hist_logs:
self.hist_logs[key] = deque(maxlen=self._default_window_length)

self.hist_logs[key].append(value)

def state_dict(self):
state_dict = super().state_dict()
Expand Down
Loading