Skip to content

Commit

Permalink
Add docs publishing pipeline and switch back to poetry (#28)
Browse files Browse the repository at this point in the history
  • Loading branch information
tgolsson authored Apr 5, 2022
1 parent 38c61ea commit f75dba0
Show file tree
Hide file tree
Showing 18 changed files with 2,194 additions and 207 deletions.
18 changes: 18 additions & 0 deletions .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
common: &common
plugins:
- EmbarkStudios/k8s#1.2.10:
service-account-name: monorepo-ci
image: gcr.io/embark-shared/ml/monorepo-controller@sha256:aad8ab820105ea1c0dea9dad53b1d1853b92eee93a4a7e3663fe0b265806fa8c
default-secret-name: buildkite-k8s-plugin
always-pull: true

agents:
cluster: builds-fi-2
queue: monorepo-ci
size: small

steps:
- label: 📚 Publish docs
command: bash .buildkite/publish-docs.sh
branches: "main"
<< : *common
39 changes: 39 additions & 0 deletions .buildkite/publish-docs.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
set -eo pipefail

echo --- Installing dependencies

apt-get update \
&& apt-get install --no-install-recommends -y \
curl \
build-essential

export PYTHONUNBUFFERED=1 \
PYTHONDONTWRITEBYTECODE=1 \
PIP_NO_CACHE_DIR=off \
PIP_DISABLE_PIP_VERSION_CHECK=on \
PIP_DEFAULT_TIMEOUT=100 \
POETRY_VERSION=1.2.0b1 \
POETRY_HOME="/tmp/poetry" \
POETRY_VIRTUALENVS_IN_PROJECT=true \
POETRY_NO_INTERACTION=1 \

pip install poetry==1.2.0b1
poetry install
poetry env info --path


echo --- Initializing gcloud

curl https://sdk.cloud.google.com > install.sh && \
bash install.sh --disable-prompts 2>&1 && \
/root/google-cloud-sdk/install.sh --path-update true --usage-reporting false --quiet

if [ -f '/root/google-cloud-sdk/path.bash.inc' ]; then . '/root/google-cloud-sdk/path.bash.inc'; fi
gcloud config set account monorepo-ci@embark-builds.iam.gserviceaccount.com

echo --- Building docs
pushd docs
poetry env info --path
make deploy
gsutil rsync -r ./_build/dirhtml gs://embark-static/emote-docs
popd
25 changes: 17 additions & 8 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,8 +1,17 @@
__pycache__/
.vscode
.dir-locals.el
*.egg-info
*.onnx
.coverage
docs/_build
runs/**
# Miscellaneous editor files
.vscode
.dir-locals.el

# Output from Python and Python tools
__pycache__/
*.egg-info
.coverage

# Files generated by the docs publishing systems
docs/_build
docs/generated
docs/coverage.rst

# Outputs from Emote and tests
*.onnx
runs/**
285 changes: 144 additions & 141 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,141 +1,144 @@
<!-- Allow this file to not have a first line heading -->
<!-- markdownlint-disable-file MD041 -->

<!-- inline html -->
<!-- markdownlint-disable-file MD033 -->

<div align="center">

# `🍒 emote`

**E**mbark's **Mo**dular **T**raining **E**ngine - a flexible framework for
reinforcement learning

[![Embark](https://img.shields.io/badge/embark-open%20source-blueviolet.svg)](https://embark.dev)
[![Embark](https://img.shields.io/badge/discord-ark-%237289da.svg?logo=discord)](https://discord.gg/dAuKfZS)
[![Documentation Status](https://readthedocs.org/projects/emote/badge/?version=latest)](http://emote.readthedocs.io/?badge=latest)
[![PyPI version fury.io](https://badge.fury.io/py/emote.svg)](https://pypi.python.org/pypi/emote/)
[![Build status](https://github.com/EmbarkStudios/emote/workflows/CI/badge.svg)](https://github.com/EmbarkStudios/emote/actions)

🚧 This project is very much **work in progress and not yet ready for production use.** 🚧

</div>


## What it does

Emote provides a way to build reusable components for creating reinforcement learning algorithms, and a
library of premade componenents built in this way. It is strongly inspired by the callback setup used
by Keras and FastAI.

As an example, let us see how the SAC, the Soft Actor Critic algorithm by
[Haarnoja et al.](https://arxiv.org/abs/1801.01290) can be written using Emote. The main algorithm in
SAC is given in [Soft Actor-Critic Algorithms and Applications](https://arxiv.org/abs/1812.05905) and
looks like this:

<div align="center">

![Main SAC algorithm](./docs/haarnoja_sac.png)

</div>

Using the components provided with Emote, we can write this as

```python
env = DictGymWrapper(AsyncVectorEnv(10 * [HitTheMiddle]))
table = DictObsTable(spaces=env.dict_space, maxlen=1000)
memory_proxy = TableMemoryProxy(table)
dataloader = MemoryLoader(table, 100, 2, "batch_size")

q1 = QNet(2, 1)
q2 = QNet(2, 1)
policy = Policy(2, 1)
ln_alpha = torch.tensor(1.0, requires_grad=True)
agent_proxy = FeatureAgentProxy(policy)

callbacks = [
QLoss(name="q1", q=q1, opt=Adam(q1.parameters(), lr=8e-3)),
QLoss(name="q2", q=q2, opt=Adam(q2.parameters(), lr=8e-3)),
PolicyLoss(pi=policy, ln_alpha=ln_alpha, q=q1, opt=Adam(policy.parameters())),
AlphaLoss(pi=policy, ln_alpha=ln_alpha, opt=Adam([ln_alpha]), n_actions=1),
QTarget(pi=policy, ln_alpha=ln_alpha, q1=q1, q2=q2),
SimpleGymCollector(env, agent_proxy, memory_proxy, warmup_steps=500),
FinalLossTestCheck([logged_cbs[2]], [10.0], 2000),
]

trainer = Trainer(callbacks, dataloader)
trainer.train()
```

Here each callback in the `callbacks` list is its own reusable class that can readily be used
for other similar algorithms. The callback classes themselves are very straight forward to write.
As an example, here is the `PolicyLoss` callback.

```python
class PolicyLoss(LossCallback):
def __init__(
self,
*,
pi: nn.Module,
ln_alpha: torch.tensor,
q: nn.Module,
opt: optim.Optimizer,
max_grad_norm: float = 10.0,
name: str = "policy",
data_group: str = "default",
):
super().__init__(
name=name,
optimizer=opt,
network=pi,
max_grad_norm=max_grad_norm,
data_group=data_group,
)
self.policy = pi
self._ln_alpha = ln_alpha
self.q1 = q
self.q2 = q2

def loss(self, observation):
p_sample, logp_pi = self.policy(**observation)
q_pi_min = self.q1(p_sample, **observation)
# using reparameterization trick
alpha = torch.exp(self._ln_alpha).detach()
policy_loss = alpha * logp_pi - q_pi_min
policy_loss = torch.mean(policy_loss)
assert policy_loss.dim() == 0
return policy_loss
```

## Installation

For installation and environment handling we use `conda`. Install it from [here](https://docs.anaconda.com/anaconda/install/). After `conda` is set up, set up and activate the emote environment by running

```bash
conda env create -f environment.yml
conda activate emote
pip install -r pip-requirements.txt
```


## Contribution

[![Contributor Covenant](https://img.shields.io/badge/contributor%20covenant-v1.4-ff69b4.svg)](../main/CODE_OF_CONDUCT.md)

We welcome community contributions to this project.

Please read our [Contributor Guide](CONTRIBUTING.md) for more information on how to get started.
Please also read our [Contributor Terms](CONTRIBUTING.md#contributor-terms) before you make any contributions.

Any contribution intentionally submitted for inclusion in an Embark Studios project, shall comply with the Rust standard licensing model (MIT OR Apache 2.0) and therefore be dual licensed as described below, without any additional terms or conditions:

### License

This contribution is dual licensed under EITHER OF

* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or <http://www.apache.org/licenses/LICENSE-2.0>)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or <http://opensource.org/licenses/MIT>)

at your option.

For clarity, "your" refers to Embark or any other licensee/user of the contribution.
<!-- Allow this file to not have a first line heading -->
<!-- markdownlint-disable-file MD041 -->

<!-- inline html -->
<!-- markdownlint-disable-file MD033 -->

<div align="center">

# `🍒 emote`

**E**mbark's **Mo**dular **T**raining **E**ngine - a flexible framework for
reinforcement learning

[![Embark](https://img.shields.io/badge/embark-open%20source-blueviolet.svg)](https://embark.dev)
[![Embark](https://img.shields.io/badge/discord-ark-%237289da.svg?logo=discord)](https://discord.gg/dAuKfZS)
[![Build status](https://badge.buildkite.com/968ac3c0bb075fb878f9f973ed91406c8b257b0f050c197542.svg?theme=github&branch=ts/docs-poetry)](https://buildkite.com/embark-studios/emote)
[![Docs status](https://img.shields.io/badge/Docs-latest-brightgreen)](https://static.embark.net/emote-docs/)

🚧 This project is very much **work in progress and not yet ready for production use.** 🚧

</div>


## What it does

Emote provides a way to build reusable components for creating reinforcement learning algorithms, and a
library of premade componenents built in this way. It is strongly inspired by the callback setup used
by Keras and FastAI.

As an example, let us see how the SAC, the Soft Actor Critic algorithm by
[Haarnoja et al.](https://arxiv.org/abs/1801.01290) can be written using Emote. The main algorithm in
SAC is given in [Soft Actor-Critic Algorithms and Applications](https://arxiv.org/abs/1812.05905) and
looks like this:

<div align="center">

![Main SAC algorithm](./docs/haarnoja_sac.png)

</div>

Using the components provided with Emote, we can write this as

```python
env = DictGymWrapper(AsyncVectorEnv(10 * [HitTheMiddle]))
table = DictObsTable(spaces=env.dict_space, maxlen=1000)
memory_proxy = TableMemoryProxy(table)
dataloader = MemoryLoader(table, 100, 2, "batch_size")

q1 = QNet(2, 1)
q2 = QNet(2, 1)
policy = Policy(2, 1)
ln_alpha = torch.tensor(1.0, requires_grad=True)
agent_proxy = FeatureAgentProxy(policy)

callbacks = [
QLoss(name="q1", q=q1, opt=Adam(q1.parameters(), lr=8e-3)),
QLoss(name="q2", q=q2, opt=Adam(q2.parameters(), lr=8e-3)),
PolicyLoss(pi=policy, ln_alpha=ln_alpha, q=q1, opt=Adam(policy.parameters())),
AlphaLoss(pi=policy, ln_alpha=ln_alpha, opt=Adam([ln_alpha]), n_actions=1),
QTarget(pi=policy, ln_alpha=ln_alpha, q1=q1, q2=q2),
SimpleGymCollector(env, agent_proxy, memory_proxy, warmup_steps=500),
FinalLossTestCheck([logged_cbs[2]], [10.0], 2000),
]

trainer = Trainer(callbacks, dataloader)
trainer.train()
```

Here each callback in the `callbacks` list is its own reusable class that can readily be used
for other similar algorithms. The callback classes themselves are very straight forward to write.
As an example, here is the `PolicyLoss` callback.

```python
class PolicyLoss(LossCallback):
def __init__(
self,
*,
pi: nn.Module,
ln_alpha: torch.tensor,
q: nn.Module,
opt: optim.Optimizer,
max_grad_norm: float = 10.0,
name: str = "policy",
data_group: str = "default",
):
super().__init__(
name=name,
optimizer=opt,
network=pi,
max_grad_norm=max_grad_norm,
data_group=data_group,
)
self.policy = pi
self._ln_alpha = ln_alpha
self.q1 = q
self.q2 = q2

def loss(self, observation):
p_sample, logp_pi = self.policy(**observation)
q_pi_min = self.q1(p_sample, **observation)
# using reparameterization trick
alpha = torch.exp(self._ln_alpha).detach()
policy_loss = alpha * logp_pi - q_pi_min
policy_loss = torch.mean(policy_loss)
assert policy_loss.dim() == 0
return policy_loss
```

## Installation

:warning: You currently **need** to use a pre-release version of the Poetry 1.2 series. :warning:

For installation and environment handling we use `poetry`. Install it from [here](https://python-poetry.org/). After `poetry` is set up, set up and activate the emote environment by running



```bash
poetry install
```




## Contribution

[![Contributor Covenant](https://img.shields.io/badge/contributor%20covenant-v1.4-ff69b4.svg)](../main/CODE_OF_CONDUCT.md)

We welcome community contributions to this project.

Please read our [Contributor Guide](CONTRIBUTING.md) for more information on how to get started.
Please also read our [Contributor Terms](CONTRIBUTING.md#contributor-terms) before you make any contributions.

Any contribution intentionally submitted for inclusion in an Embark Studios project, shall comply with the Rust standard licensing model (MIT OR Apache 2.0) and therefore be dual licensed as described below, without any additional terms or conditions:

### License

This contribution is dual licensed under EITHER OF

* Apache License, Version 2.0, ([LICENSE-APACHE](LICENSE-APACHE) or <http://www.apache.org/licenses/LICENSE-2.0>)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or <http://opensource.org/licenses/MIT>)

at your option.

For clarity, "your" refers to Embark or any other licensee/user of the contribution.
9 changes: 7 additions & 2 deletions docs/Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,8 @@

# You can set these variables from the command line, and also
# from the environment for the first two.
SPHINXOPTS ?=
SPHINXBUILD ?= sphinx-build
SPHINXOPTS ?=
SPHINXBUILD ?= poetry run sphinx-build
SOURCEDIR = .
BUILDDIR = _build

Expand All @@ -18,3 +18,8 @@ help:
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

deploy:
@$(SPHINXBUILD) -M coverage "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
cp "$(BUILDDIR)/coverage/python.txt" "$(SOURCEDIR)/coverage.rst"
@$(SPHINXBUILD) -M dirhtml "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
Loading

0 comments on commit f75dba0

Please sign in to comment.