-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
22 changed files
with
1,888 additions
and
190 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# GPT-2 pretraining setup | ||
{ | ||
# parallelism settings ( you will want to change these based on your cluster setup, ideally scheduling pipeline stages | ||
# across the node boundaries ) | ||
"pipe_parallel_size": 1, | ||
"model_parallel_size": 1, | ||
|
||
# model settings | ||
"num_layers": 24, | ||
"hidden_size": 2048, | ||
"num_attention_heads": 16, | ||
"seq_length": 2048, | ||
"max_position_embeddings": 2048, | ||
"norm": "layernorm", | ||
"pos_emb": "rotary", | ||
"no_weight_tying": true, | ||
"gpt_j_residual": false, | ||
"output_layer_parallelism": "column", | ||
|
||
# Transformer Engine settings | ||
"te_columnparallel": false, | ||
"te_rowparallel": false, | ||
"te_layernorm_mlp": true, | ||
"te_mha": true, | ||
"te_fp8_format": "hybrid", | ||
"te_fp8_wgrad": true, | ||
"te_fp8_amax_history_len": 1, | ||
"te_fp8_amax_compute_algo": "most_recent", | ||
"te_fp8_margin": 0, | ||
"te_fp8_mha": false, | ||
|
||
# these should provide some speedup but takes a while to build, set to true if desired | ||
"scaled_upper_triang_masked_softmax_fusion": false, | ||
"bias_gelu_fusion": false, | ||
"rope_fusion": false, | ||
"layernorm_fusion": false, | ||
|
||
# init methods | ||
"init_method": "small_init", | ||
"output_layer_init_method": "wang_init", | ||
|
||
# optimizer settings | ||
"optimizer": { | ||
"type": "Adam", | ||
"params": { | ||
"lr": 0.0002, | ||
"betas": [0.9, 0.95], | ||
"eps": 1.0e-8, | ||
} | ||
}, | ||
"min_lr": 0.00002, | ||
|
||
# for all zero_optimization options, see https://www.deepspeed.ai/docs/config-json/#zero-optimizations-for-fp16-training | ||
"zero_optimization": { | ||
"stage": 1, | ||
"allgather_partitions": True, | ||
"allgather_bucket_size": 500000000, | ||
"overlap_comm": True, | ||
"reduce_scatter": True, | ||
"reduce_bucket_size": 500000000, | ||
"contiguous_gradients": True, | ||
}, | ||
|
||
# batch / data settings | ||
"train_micro_batch_size_per_gpu": 4, | ||
"data_impl": "mmap", | ||
|
||
# activation checkpointing | ||
"checkpoint_activations": true, | ||
"checkpoint_num_layers": 1, | ||
"partition_activations": true, | ||
"synchronize_each_layer": true, | ||
|
||
# regularization | ||
"gradient_clipping": 1.0, | ||
"weight_decay": 0.1, | ||
"hidden_dropout": 0, | ||
"attention_dropout": 0, | ||
|
||
# precision settings | ||
"fp16": { | ||
"fp16": true, | ||
"enabled": true, | ||
"loss_scale": 0, | ||
"loss_scale_window": 1000, | ||
"hysteresis": 2, | ||
"min_loss_scale": 1 | ||
}, | ||
|
||
# misc. training settings | ||
"train_iters": 320000, | ||
"lr_decay_iters": 320000, | ||
"distributed_backend": "nccl", | ||
"lr_decay_style": "cosine", | ||
"warmup": 0.01, | ||
"checkpoint_factor": 10000, | ||
"eval_interval": 1000, | ||
"eval_iters": 10, | ||
|
||
# logging | ||
"log_interval": 100, | ||
"steps_per_print": 10, | ||
"keep_last_n_checkpoints": 4, | ||
"wall_clock_breakdown": true, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# Copyright (c) 2024, EleutherAI | ||
# This file is based on code by the authors denoted below and has been modified from its original version. | ||
# | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""Online dataset.""" | ||
from typing import Union, List | ||
|
||
import numpy as np | ||
import torch | ||
import torch.utils.data | ||
import socket | ||
import pickle | ||
from megatron.mpu.initialize import get_data_parallel_rank | ||
|
||
|
||
class OnlineDataset(torch.utils.data.Dataset): | ||
def __init__( | ||
self, | ||
num_samples, | ||
seq_length, | ||
leave_one_out=False, | ||
data_split="train", | ||
dataserver_ips: Union[str, List[str]] = "localhost", | ||
dataserver_ports: Union[int, List[int]] = 10000, | ||
): | ||
self.num_samples = num_samples | ||
self.global_rank = get_data_parallel_rank() | ||
self.leave_one_out = leave_one_out | ||
self.reward_buffer = [] | ||
self.online_batching_data = [] | ||
self.data_split = data_split | ||
self.seq_length = seq_length | ||
self.dataserver_ips = dataserver_ips | ||
self.dataserver_ports = dataserver_ports | ||
|
||
def __len__(self): | ||
# dummy value since it's decided by the Online Trainer | ||
return self.num_samples | ||
|
||
def update_online_batches(self): | ||
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | ||
if isinstance(self.dataserver_ips, str): | ||
ipaddr = self.dataserver_ips | ||
else: | ||
ipaddr = self.dataserver_ips[self.global_rank] | ||
if isinstance(self.dataserver_ports, int): | ||
# simply add over the global rank | ||
port = self.dataserver_ports | ||
else: | ||
# in case we want to use different ports for different ranks, e.g. per machine sampling | ||
port = self.dataserver_ports[self.global_rank] | ||
print(f"Connecting to {ipaddr}:{port}") | ||
s.connect((ipaddr, port)) | ||
s.send(self.data_split.encode()) | ||
data = b"" | ||
while True: | ||
chunk = s.recv(4096) | ||
if not chunk: | ||
break | ||
data += chunk | ||
batch_data = pickle.loads(data) | ||
s.close() | ||
print(f"Received {len(batch_data)} samples from the server.") | ||
for data in batch_data: | ||
if self.leave_one_out: | ||
rewards = list() | ||
for i in range(len(data["rewards"])): | ||
rewards.append( | ||
data["rewards"][i] | ||
- np.mean( | ||
[ | ||
data["rewards"][j] | ||
for j in range(len(data["rewards"])) | ||
if j != i | ||
] | ||
) | ||
) | ||
data["raw_rewards"] = data["rewards"] | ||
data["rewards"] = rewards | ||
else: | ||
moving_average = 0 | ||
if len(self.reward_buffer) > 0: | ||
moving_average = np.mean(self.reward_buffer) | ||
self.reward_buffer.append(np.mean(data["rewards"])) | ||
if len(self.reward_buffer) > 100: | ||
self.reward_buffer.pop(0) | ||
# For metrics... | ||
data["raw_rewards"] = data["rewards"] | ||
data["rewards"] = [r - moving_average for r in data["rewards"]] | ||
for i in range(len(data["completions"])): | ||
self.online_batching_data.append( | ||
[ | ||
data["prefix"], | ||
data["completions"][i], | ||
data["rewards"][i], | ||
data["raw_rewards"][i], | ||
] | ||
) | ||
|
||
def __getitem__(self, idx): | ||
if len(self.online_batching_data) == 0: | ||
self.update_online_batches() | ||
batch = self.online_batching_data.pop(0) | ||
text = batch[0] + batch[1] | ||
label = [-100 for _ in batch[0]] + batch[1] | ||
# +1 because of causal masking | ||
if len(text) <= self.seq_length: | ||
text = text + [0] * ((self.seq_length + 1) - len(text)) | ||
label = label + [-100] * ((self.seq_length + 1) - len(label)) | ||
return { | ||
"text": np.array(text, dtype=np.int64), | ||
"label": np.array(label, dtype=np.int64), | ||
"reward": np.array([batch[2]], dtype=np.float32), | ||
"raw_reward": np.array([batch[3]], dtype=np.float32), | ||
} |
Oops, something went wrong.