Skip to content

EleutherAI/clearnets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

51 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Clearnets

Development of and interpretability using disentangled architectures.

Train

Contains code for training sparse feedforward transformers, regular transformers, SAEs, and Transcoders.

Train GptNeoX-style base transformers with either sparse or dense feedforwards:

python -m clearnets.train.train_transformer
python -m clearnets.train.train_transformer --dense
python -m clearnets.train.train_transformer --dense --dataset "lennart-finke/SimpleStories" --tokenizer "EleutherAI/gpt-neo-125m"

sparse_gptneox and sparse_gptneox_config are both modified from the GptNeoX implementation in HuggingFace transformers with a flag to enable training with sparse feedforwards.

Train a comparison SAE or transcoder on a dense feedforward transformer using:

python -m clearnets.train.train_sae_cli --run_name Transcoder-roneneldan--TinyStories-8M --ckpt "data/roneneldan--TinyStories/Dense-TinyStories8M-s=42-full-vocab/checkpoints/last.ckpt" --hookpoints transformer.h.*.mlp --ctx_len 512 --batch_size 128 --grad_acc_steps 2 --max_examples 768_000 --transcode

Autointerp

Run:

python -m clearnets.autointerp.e2e_clearnet

with the following config arguments set to match the experiment:

  • model
  • sparse_model
  • hookpoints
  • mlp_mode

Generalization

Experiments for tracking generalization of neural networks using disentangled activations.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published