Skip to content

Edward-K1/validatedata

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Validatedata

build workflow PyPI version  

An easier way to validate data in python

Installation

pip install validatedata

Usage

There are three ways to validate data:

1. Using the validate_types decorator

from validatedata import validate_types


@validate_types()
def sum(num1:int, num2:int):
    return num1 + num2

print(sum(4, 6))

# raises exception
sum('bread', 'butter')

2. Using the validate decorator

from validatedata import validate

rules = ['int', 'int']

@validate(rules)
def sum(a, b):
    return a + b

Parameters

  • rule - str or list or tuple or dict - rule(s) used to validate data. They should have the same index as the data.
  • raise_exceptions - bool - whether exceptions should be thrown when data is invalid. Default is False
  • is_class - bool - required for class methods that don't have the self parameter
  • kwds - dict - takes configuration parameters that aren't explicitly catered for, e.g log_errors and group_errors

Set log_errors to True if you wish to log unhandled errors occuring in the background i.e @validate(rules, ..., kwds={'log_errors': True})

Set group_errors to False if you wish to disable grouping of errors

When the data does not match the rules, a dictionary is returned in the following format:

{
    'errors': [[group1], [group2], ...]
}

or

{
    'errors': [error1, error2, ...]
}

3. Using the validate_data function

from validatedata import validate_data

rules = [{
    'type': 'int',
    'range': (1, 'any'),
    'range-message': 'value should be an integer greater than zero'
}, {
    'type': 'int',
    'range': (1, 'any')
}]

def sum(a, b):
    total = 0

    result = validate_data(data=[a, b], rule=rules)

    if result.ok:
        total = a + b
    
    return total

Custom messages can be set by adding a key that matches the format, {rule}-message e.g range-message, length-message, et cetera. They are recommended since the present defaults might be too generic in some circumstances

Parameters

  • data - list or str or dict - the data to be validated
  • rule - same as decorator
  • raise_exceptions - same as decorator
  • is_class - same as decorator
  • kwds - same as decorator

When the data parameter is a dict, rule should also be a dict in this format:

{'keys': OrderedDict({
    'key1': {'type':'<type>', ...},
    'key2': {'type': 'int', 'range': (5, 1000)}
})}

For Python versions >= 3.7 you can replace OrderedDict with a standard dict since they are said to maintain insertion order

 

A SimpleNamespace object with the attributes ok and errors is returned. It can be accessed like so:

result = validate_data(...)

if result.ok:
    pass # do x

else:
    errors = result.errors
    pass # do y

Types (validate and validate_data)

  • bool
  • date
  • email
  • even
  • float
  • int
  • odd
  • str
  • dict
  • list
  • regex
  • set
  • tuple
  • object

 

Rules

  • length - integer - expected length of a string, int, or object
  • contains - string or tuple of values expected in an object
  • excludes - string or tuple of values not permitted
  • options - tuple - a tuple of permitted values
  • strict - boolean indicating whether data should be type cast or not
  • expression - string - ensures data matches a given regular expression
  • type - string - specifies type of data expected. Should always be included
  • range - tuple - specifies permitted range or values. Used with numbers and dates
  • startswith - object - string, int, et cetera that a type starts with
  • endswith - object - string, int, et cetera that a type ends with

 

Examples

signup_rules = [{
    'type': 'str',
    'expression': r'^[^\d\W_]+[\w\d_-]{2,31}$',
    'expression-message': 'invalid username'
}, 
'email:msg:invalid email',
 {
    'type':'str',
    'expression':r'(?=\S*[a-z])(?=\S*[A-Z])(?=\S*\d)(?=\S*[^\w\s])\S{8,}$',
    'message':'password must contain a number, an uppercase letter, a symbol, and should be at least 8 characters long without spaces'
}]


class User:
    @validate(signup_rules, raise_exceptions=True)
    def signup(self, username, email, password):
        return "Account Created"


user = User()
response = user.signup('helterskelter', 'paddle', 'Arosebyanyname?1')
# response = user.signup('helterskelter', 'paddle@gmail.com', 'Arosebyanyname?1')
print(response)



rules = ['str:20', 'int:10', 'list:5']

rules = [{'type':'str', 'length':20}, {'type':'int', 'length':10}, {'type':'list', 'length': 5}]

rules = [{'type':'date', 'range': ('01-Jan-2021', 'any'), 'range-message':'the lowest date is 1st Jan 2021'}]



class User:

    @classmethod
    @validate(rule=['str', 'str'], is_class=True)
    def format_name(cls, firstname, lastname):
        return f'{firstname} {lastname}'

 

Additional Notes

  • The functionality of a rule depends on the type it's working upon, e.g
{'type':'int', 'range':(2, 100)} # int >= 2 and <= 100

{'type': 'str', 'range':(2, 100)} # string of variable length: len(s) >= 2 and len(s) <= 100
  • The equivalence rules equal to and not equal to aren't included but their effect can be achieved using options and excludes
{..., 'options': (200, )}

{..., 'excludes': ('Bill', ... )}
  • Object caters to custom types
class Person:
    pass

rules = [{'type':'object', 'object':Person, 'message':'Person object expected'}]

result = validate_data(data=[12], rule=rules)

# person = Person()
# result = validate_data(data=[person], rule=rules)
  • The current version does not support nested data

License

MIT