MGFNet: A Multiscale Gated Fusion Network For Multimodal Semantic Segmentation
This repository contains the official implementation of MGFNet, a novel network for multimodal semantic segmentation.
- Achieves efficient and precise multimodal remote sensing semantic segmentation
- MGFNet: A dual-stream multimodal semantic segmentation network with a multilevel fusion strategy.
- Introduces the MGF module for extracting multiscale complementary features and adaptively weighting modalities.
- CMI & CMME Modules: The CMI module enables rich cross-modal interactions and long-range dependency modeling, while the CMME module enhances multiscale feature integration for improved segmentation.
- MGFNet achieves competitive results on the following datasets:
- Vaihingen: 84.18% mIoU
- Potsdam : 85.87% mIoU
- We provide visualizations of our results on the Vaihingen and Potsdam datasets:
- Requirements
- Python 3.10.15
- CUDA 12.1
- torch==1.13.0+cu117
- torchvision==0.14.0+cu117
- tqdm==4.66.4
- numpy==1.23.5
- pandas==2.0.1
- ipython==8.12.3
To quickly test the MGFNet with randomly generated tensors, you can run the demo.py file. This allows you to verify the model functionality without requiring a dataset.
- Ensure that the required dependencies are installed:
pip install -r requirements.txt
- Run the demo script:
python demo.py
All datasets including ISPRS Potsdam, ISPRS Vaihingen can be downloaded here.