Skip to content

DrWuHonglin/MGFNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MGFNet

MGFNet: A Multiscale Gated Fusion Network For Multimodal Semantic Segmentation

This repository contains the official implementation of MGFNet, a novel network for multimodal semantic segmentation.

  • Achieves efficient and precise multimodal remote sensing semantic segmentation
  • MGFNet: A dual-stream multimodal semantic segmentation network with a multilevel fusion strategy.
  • Introduces the MGF module for extracting multiscale complementary features and adaptively weighting modalities.
  • CMI & CMME Modules: The CMI module enables rich cross-modal interactions and long-range dependency modeling, while the CMME module enhances multiscale feature integration for improved segmentation.

Results

  1. MGFNet achieves competitive results on the following datasets:
  • Vaihingen: 84.18% mIoU
  • Potsdam : 85.87% mIoU
  1. We provide visualizations of our results on the Vaihingen and Potsdam datasets:

Qualitative performance comparisons on the Vaihingen and Potsdam test set. (a) RGB images, (b) DSM, (c) Ground truth, (d) ABCNet, (e) TransUNet, (f) UNetFormer, (g) MAResU-Net, (h) CMTFNet, (i) vFuseNet, (j) SA-GATE, (k) ESANet, (l) CMGFNet, (m) CMFNet, (n) SGFNet, (o) AsymFormer, and (p) proposed MGFNet. The red boxes are added to all subfigures to highlight the differences.

Installation

  1. Requirements
  • Python 3.10.15
  • CUDA 12.1
  • torch==1.13.0+cu117
  • torchvision==0.14.0+cu117
  • tqdm==4.66.4
  • numpy==1.23.5
  • pandas==2.0.1
  • ipython==8.12.3

Demo

To quickly test the MGFNet with randomly generated tensors, you can run the demo.py file. This allows you to verify the model functionality without requiring a dataset.

  1. Ensure that the required dependencies are installed:
pip install -r requirements.txt
  1. Run the demo script:
python demo.py

Datasets

All datasets including ISPRS Potsdam, ISPRS Vaihingen can be downloaded here.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages