Skip to content

5_Orthomosaic Models

Daniel Buscombe edited this page Feb 23, 2023 · 3 revisions

These models have been made for the Seg2Map package for application of <=1m nadir and orthomosaic imagery

💾 enviroatlas

  • EnviroAtlas is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic/satellite imagery. Classes:
  1. nodata
  2. water
  3. impervious
  4. barren
  5. trees
  6. herbaceous
  7. shrubland

Example labeled imagery

3009726_sw_a_naip-3_overlay 3009742_nw_a_naip-3_overlay 3311117_nw_a_naip-0_overlay 3311223_se_a_naip-0_overlay 4008040_ne_a_naip-3_overlay 4008040_sw_a_naip-1_overlay

Models for 6-class / 512x512 imagery

Training curve for the best model:

enviroatlas_1m_RGB_512_v1_trainhist_24

Some example validation outputs:

enviroatlas_1m_RGB_512_v1_val_429 enviroatlas_1m_RGB_512_v1_val_433 enviroatlas_1m_RGB_512_v1_val_449 enviroatlas_1m_RGB_512_v1_val_394

💾 open earth map

  • OpenEarthNet is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic imagery. Classes:
  1. bareland
  2. rangeland
  3. development
  4. road
  5. tree
  6. water
  7. agricultural
  8. building
  9. nodata
  • OpenEarthMap
  • 9 class dataset (bareland, rangeland, dev., road, tree, water, ag., building, nodata)

Example labeled imagery

aachen_4_overlay aachen_46_overlay abancay_11_overlay abancay_32_overlay accra_13_overlay

Model for 9-classes / 512x512 imagery

Training curve for the best model:

OpenEarthMap_9class_RGB_512_v4_trainhist_24

Some example validation outputs:

OpenEarthMap_9class_RGB_512_v4_val_471 OpenEarthMap_9class_RGB_512_v4_val_474 OpenEarthMap_9class_RGB_512_v4_val_475 OpenEarthMap_9class_RGB_512_v4_val_478 OpenEarthMap_9class_RGB_512_v4_val_466

💾 deepglobe

  • DeepGlobe is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic/satellite imagery. Classes:
  1. urban
  2. agricultural
  3. rangeland
  4. forest
  5. water
  6. bare
  7. unknown
  • DeepGlobe / aerial / high-res. sat
  • 7 class dataset (urban, ag., rangeland, forest, water, bare, unknown)

Example labeled imagery

6399_sat_overlay 10452_sat_overlay 15573_sat_overlay 28935_sat_overlay 33573_sat_overlay

512x512 imagery

Training curve for the best model:

deepglobe_naipRGB_512_v6_trainhist_24

Some example validation outputs:

deepglobe_naipRGB_512_v6_val_324 deepglobe_naipRGB_512_v6_val_288 deepglobe_naipRGB_512_v6_val_294 deepglobe_naipRGB_512_v6_val_306 deepglobe_naipRGB_512_v6_val_309

💾 AAAI-buildings

  • AAAI-Buildings is a dataset for segmentation of buildings in hurricane-affected areas in high-resolution imagery. A dataset of high resolution (m) orthorectified aerial imagery, labeled according to the following classes:
  1. Other
  2. Building
  3. Flooded Building

Example labeled imagery

formodelnoaug_ex1 formodelnoaug_ex14 formodelnoaug_ex27 formodelnoaug_ex51 formodelnoaug_ex64

Model for 1024x1024 imagery, building/no-building

  1. Other
  2. Building

Training curve for the best model:

Some example validation outputs:

aaai_RGB_1024_v1_val_92 aaai_RGB_1024_v1_val_103 aaai_RGB_1024_v1_val_114 aaai_RGB_1024_v1_val_125 aaai_RGB_1024_v1_val_136

Model for 1024x1024 imagery, flooded-building/other

  1. Other
  2. Flooded Building

Training curve for the best model:

Some example validation outputs:

aaai_flood_RGB_1024_v1_val_68 aaai_flood_RGB_1024_v1_val_71 aaai_flood_RGB_1024_v1_val_89 aaai_flood_RGB_1024_v1_val_92 aaai_flood_RGB_1024_v1_val_136

💾 XBD

  • XBD-hurricanes subset is a dataset for segmentation of buildings in hurricane-affected areas in high-resolution imagery. A dataset of high resolution (cm - m) oblique aerial imagery, labeled according to the following classes:
  1. No-damage
  2. Minor-damage
  3. Major-damage
  4. No-building
  • dataset: https://arxiv.org/abs/1911.09296
  • dataset citation: Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, and Matthew Gaston. Creating xbd: A dataset for assessing building damage from satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019. https://arxiv.org/abs/1911.09296

Example labeled imagery

formodelnoaug_ex28 formodelnoaug_ex58 formodelnoaug_ex76

Model for 768x768 imagery, building/no-building

  • Zenodo release: https://zenodo.org/record/7613212
  • model citation: Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/buildings in RGB 768x768 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7613212
  • segmentation zoo model name: xbd_building_7613212
  • classes: 1. other, 2. building

Training curve for the best model:

Some example validation outputs:

xbd_building_RGB_768_v4_val_93 xbd_building_RGB_768_v4_val_97 xbd_building_RGB_768_v4_val_104 xbd_building_RGB_768_v4_val_132 xbd_building_RGB_768_v4_val_137

Model for 768x768 imagery, building damage

  • Zenodo release: https://doi.org/10.5281/zenodo.7613175
  • model citation: Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/damaged buildings in RGB 768x768 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7613175
  • segmentation zoo model name: xbd_damagedbuilding_7613175
  • classes: 1. no-damage, 2. minor-damage, 3. major-damage, 4. no building

Training curve for the best model:

Some example validation outputs:

xbd_RGB_768_v3_val_73 xbd_RGB_768_v3_val_84 xbd_RGB_768_v3_val_112 xbd_RGB_768_v3_val_113 xbd_RGB_768_v3_val_127