-
Notifications
You must be signed in to change notification settings - Fork 3
5_Orthomosaic Models
Daniel Buscombe edited this page Feb 23, 2023
·
3 revisions
These models have been made for the Seg2Map package for application of <=1m nadir and orthomosaic imagery
- EnviroAtlas is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic/satellite imagery. Classes:
- nodata
- water
- impervious
- barren
- trees
- herbaceous
- shrubland
- Zenodo release: https://zenodo.org/record/7576909#.Y-FvcxzMLRY
- Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for EnviroAtlas/6-class segmentation of RGB 512x512 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7576909
- segmentation zoo model name:
enviroatlas_6class_7576909
Training curve for the best model:
Some example validation outputs:
- OpenEarthNet is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic imagery. Classes:
- bareland
- rangeland
- development
- road
- tree
- water
- agricultural
- building
- nodata
- OpenEarthMap
- 9 class dataset (bareland, rangeland, dev., road, tree, water, ag., building, nodata)
- Zenodo release: https://zenodo.org/record/7576894#.Y-FsiRzMLRY
- Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for OpenEarthMap/9-class segmentation of RGB 512x512 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7576894
- segmentation zoo model name:
openearthmap_9class_7576894
Training curve for the best model:
Some example validation outputs:
- DeepGlobe is a dataset for generic landuse/cover segmentation of high-resolution orthomosaic/satellite imagery. Classes:
- urban
- agricultural
- rangeland
- forest
- water
- bare
- unknown
- DeepGlobe / aerial / high-res. sat
- 7 class dataset (urban, ag., rangeland, forest, water, bare, unknown)
- Zenodo release: https://zenodo.org/record/7576898#.Y-FtUBzMLRY
- Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for DeepGlobe/7-class segmentation of RGB 512x512 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7576898
- segmentation zoo model name:
deepglobe_7class_7576898
Training curve for the best model:
Some example validation outputs:
- AAAI-Buildings is a dataset for segmentation of buildings in hurricane-affected areas in high-resolution imagery. A dataset of high resolution (m) orthorectified aerial imagery, labeled according to the following classes:
- Other
- Building
- Flooded Building
- dataset: https://github.com/FrontierDevelopmentLab/multi3net
- dataset citation: Rudner, T. G. J.; Rußwurm, M.; Fil, J.; Pelich, R.; Bischke, B.; Kopačková, V.; Biliński, P. Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery. In AAAI 2019. https://arxiv.org/pdf/1812.01756.pdf
- Zenodo release: https://doi.org/10.5281/zenodo.7607895
- model citation: Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for segmentation of buildings of RGB 1024x1024 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7607895
- segmentation zoo model name:
aaai_building_7607895
- Classes:
- Other
- Building
Training curve for the best model:
Some example validation outputs:
- Zenodo release: https://doi.org/10.5281/zenodo.7622733
- model citation: Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map Res-UNet models for segmentation of AAAI/flooded buildings in RGB 1024x1024 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7622733
- segmentation zoo model name:
aaai_floodedbuildings_7622733
- Classes:
- Other
- Flooded Building
Training curve for the best model:
Some example validation outputs:
- XBD-hurricanes subset is a dataset for segmentation of buildings in hurricane-affected areas in high-resolution imagery. A dataset of high resolution (cm - m) oblique aerial imagery, labeled according to the following classes:
- No-damage
- Minor-damage
- Major-damage
- No-building
- dataset: https://arxiv.org/abs/1911.09296
- dataset citation: Ritwik Gupta, Bryce Goodman, Nirav Patel, Ricky Hosfelt, Sandra Sajeev, Eric Heim, Jigar Doshi, Keane Lucas, Howie Choset, and Matthew Gaston. Creating xbd: A dataset for assessing building damage from satellite imagery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019. https://arxiv.org/abs/1911.09296
- Zenodo release: https://zenodo.org/record/7613212
- model citation: Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/buildings in RGB 768x768 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7613212
- segmentation zoo model name:
xbd_building_7613212
- classes: 1. other, 2. building
Training curve for the best model:
Some example validation outputs:
- Zenodo release: https://doi.org/10.5281/zenodo.7613175
- model citation: Buscombe, Daniel. (2023). Doodleverse/Segmentation Zoo/Seg2Map SegFormer models for segmentation of xBD/damaged buildings in RGB 768x768 high-res. images (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7613175
- segmentation zoo model name:
xbd_damagedbuilding_7613175
- classes: 1. no-damage, 2. minor-damage, 3. major-damage, 4. no building
Training curve for the best model:
Some example validation outputs: