-
Notifications
You must be signed in to change notification settings - Fork 707
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[TensorRT] support YOLOv6 with TensorRT backend (#420)
* add yolov6 tensorrt test code * add TRTYolov6 in namespace and models * implement yolov6 code * update name
- Loading branch information
1 parent
841eaf2
commit 5103236
Showing
5 changed files
with
284 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
// | ||
// Created by wangzijian on 7/26/24. | ||
// | ||
|
||
#include "trt_yolov6.h" | ||
using trtcv::TRTYoloV6; | ||
|
||
|
||
void TRTYoloV6::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs, int target_height, int target_width, | ||
trtcv::TRTYoloV6::YOLOv6ScaleParams &scale_params) { | ||
if (mat.empty()) return; | ||
int img_height = static_cast<int>(mat.rows); | ||
int img_width = static_cast<int>(mat.cols); | ||
|
||
mat_rs = cv::Mat(target_height, target_width, CV_8UC3, | ||
cv::Scalar(114, 114, 114)); | ||
// scale ratio (new / old) new_shape(h,w) | ||
float w_r = (float) target_width / (float) img_width; | ||
float h_r = (float) target_height / (float) img_height; | ||
float r = std::min(w_r, h_r); | ||
// compute padding | ||
int new_unpad_w = static_cast<int>((float) img_width * r); // floor | ||
int new_unpad_h = static_cast<int>((float) img_height * r); // floor | ||
int pad_w = target_width - new_unpad_w; // >=0 | ||
int pad_h = target_height - new_unpad_h; // >=0 | ||
|
||
int dw = pad_w / 2; | ||
int dh = pad_h / 2; | ||
|
||
// resize with unscaling | ||
cv::Mat new_unpad_mat; | ||
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone. | ||
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h)); | ||
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h))); | ||
|
||
// record scale params. | ||
scale_params.r = r; | ||
scale_params.dw = dw; | ||
scale_params.dh = dh; | ||
scale_params.new_unpad_w = new_unpad_w; | ||
scale_params.new_unpad_h = new_unpad_h; | ||
scale_params.flag = true; | ||
} | ||
|
||
void TRTYoloV6::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output, float iou_threshold, | ||
unsigned int topk, unsigned int nms_type) { | ||
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk); | ||
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk); | ||
else lite::utils::hard_nms(input, output, iou_threshold, topk); | ||
} | ||
|
||
|
||
void TRTYoloV6::normalized(cv::Mat &input_mat) { | ||
cv::cvtColor(input_mat,input_mat,cv::COLOR_BGR2RGB); | ||
input_mat.convertTo(input_mat,CV_32FC3,1.f / 255.f,0.f); | ||
} | ||
|
||
void TRTYoloV6::generate_bboxes(const trtcv::TRTYoloV6::YOLOv6ScaleParams &scale_params, | ||
std::vector<types::Boxf> &bbox_collection, float *output, float score_threshold, | ||
int img_height, int img_width) { | ||
auto pred_dims = output_node_dims[0]; | ||
const unsigned int num_anchors = pred_dims.at(1); // n = ? | ||
const unsigned int num_classes = pred_dims.at(2) - 5; | ||
|
||
float r_ = scale_params.r; | ||
int dw_ = scale_params.dw; | ||
int dh_ = scale_params.dh; | ||
|
||
bbox_collection.clear(); | ||
unsigned int count = 0; | ||
for (unsigned int i = 0; i < num_anchors; ++i) | ||
{ | ||
float obj_conf = output[i * pred_dims.at(2) + 4]; | ||
if (obj_conf < score_threshold) continue; // filter first. | ||
|
||
float cls_conf = output[i * pred_dims.at(2) + 5]; | ||
unsigned int label = 0; | ||
for (unsigned int j = 0; j < num_classes; ++j) | ||
{ | ||
float tmp_conf = output[i * pred_dims.at(2) + 5 + j]; | ||
if (tmp_conf > cls_conf) | ||
{ | ||
cls_conf = tmp_conf; | ||
label = j; | ||
} | ||
} | ||
float conf = obj_conf * cls_conf; // cls_conf (0.,1.) | ||
if (conf < score_threshold) continue; // filter | ||
|
||
float cx = output[i * pred_dims.at(2)]; | ||
float cy = output[i * pred_dims.at(2) + 1]; | ||
float w = output[i * pred_dims.at(2) + 2]; | ||
float h = output[i * pred_dims.at(2) + 3]; | ||
float x1 = ((cx - w / 2.f) - (float) dw_) / r_; | ||
float y1 = ((cy - h / 2.f) - (float) dh_) / r_; | ||
float x2 = ((cx + w / 2.f) - (float) dw_) / r_; | ||
float y2 = ((cy + h / 2.f) - (float) dh_) / r_; | ||
|
||
types::Boxf box; | ||
box.x1 = std::max(0.f, x1); | ||
box.y1 = std::max(0.f, y1); | ||
box.x2 = std::min(x2, (float) img_width - 1.f); | ||
box.y2 = std::min(y2, (float) img_height - 1.f); | ||
box.score = conf; | ||
box.label = label; | ||
box.label_text = class_names[label]; | ||
box.flag = true; | ||
bbox_collection.push_back(box); | ||
|
||
count += 1; // limit boxes for nms. | ||
if (count > max_nms) | ||
break; | ||
} | ||
|
||
#if LITETRT_DEBUG | ||
std::cout << "detected num_anchors: " << num_anchors << "\n"; | ||
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n"; | ||
#endif | ||
|
||
|
||
|
||
} | ||
|
||
|
||
void TRTYoloV6::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes, float score_threshold, | ||
float iou_threshold, unsigned int topk, unsigned int nms_type) { | ||
|
||
if (mat.empty()) return; | ||
// this->transform(mat); | ||
const int input_height = input_node_dims.at(2); | ||
const int input_width = input_node_dims.at(3); | ||
int img_height = static_cast<int>(mat.rows); | ||
int img_width = static_cast<int>(mat.cols); | ||
|
||
// resize & unscale | ||
cv::Mat mat_rs; | ||
YOLOv6ScaleParams scale_params; | ||
resize_unscale(mat, mat_rs, input_height, input_width, scale_params); | ||
|
||
normalized(mat_rs); | ||
|
||
// 1.make input | ||
std::vector<float> input; | ||
trtcv::utils::transform::create_tensor(mat_rs,input,input_node_dims,trtcv::utils::transform::CHW); | ||
|
||
//2. infer | ||
cudaMemcpyAsync(buffers[0], input.data(), input_node_dims[0] * input_node_dims[1] * input_node_dims[2] * input_node_dims[3] * sizeof(float), | ||
cudaMemcpyHostToDevice, stream); | ||
cudaStreamSynchronize(stream); | ||
|
||
|
||
bool status = trt_context->enqueueV3(stream); | ||
cudaStreamSynchronize(stream); | ||
if (!status){ | ||
std::cerr << "Failed to infer by TensorRT." << std::endl; | ||
return; | ||
} | ||
|
||
// Synchronize the stream to ensure all operations are complete | ||
cudaStreamSynchronize(stream); | ||
// get the first output dim | ||
auto pred_dims = output_node_dims[0]; | ||
|
||
std::vector<float> output(pred_dims[0] * pred_dims[1] * pred_dims[2]); | ||
|
||
cudaMemcpyAsync(output.data(), buffers[1], pred_dims[0] * pred_dims[1] * pred_dims[2] * sizeof(float), | ||
cudaMemcpyDeviceToHost, stream); | ||
cudaStreamSynchronize(stream); | ||
|
||
//3. generate the boxes | ||
std::vector<types::Boxf> bbox_collection; | ||
generate_bboxes(scale_params, bbox_collection, output.data(), score_threshold, img_height, img_width); | ||
nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type); | ||
|
||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
// | ||
// Created by wangzijian on 7/20/24. | ||
// | ||
|
||
#ifndef LITE_AI_TOOLKIT_TRT_YOLOV6_H | ||
#define LITE_AI_TOOLKIT_TRT_YOLOV6_H | ||
|
||
#include "lite/trt/core/trt_core.h" | ||
#include "lite/utils.h" | ||
#include "lite/trt/core/trt_utils.h" | ||
|
||
namespace trtcv | ||
{ | ||
class LITE_EXPORTS TRTYoloV6 : public BasicTRTHandler | ||
{ | ||
public: | ||
explicit TRTYoloV6(const std::string &_trt_model_path, unsigned int _num_threads = 1) : | ||
BasicTRTHandler(_trt_model_path, _num_threads) | ||
{}; | ||
|
||
~TRTYoloV6() override = default; | ||
|
||
private: | ||
// nested classes | ||
typedef struct | ||
{ | ||
float r; | ||
int dw; | ||
int dh; | ||
int new_unpad_w; | ||
int new_unpad_h; | ||
bool flag; | ||
} YOLOv6ScaleParams; | ||
|
||
private: | ||
const char *class_names[80] = { | ||
"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", | ||
"fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", | ||
"elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", | ||
"skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", | ||
"tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", | ||
"sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", | ||
"potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", | ||
"cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", | ||
"scissors", "teddy bear", "hair drier", "toothbrush" | ||
}; | ||
enum NMS | ||
{ | ||
HARD = 0, BLEND = 1, OFFSET = 2 | ||
}; | ||
static constexpr const unsigned int max_nms = 30000; | ||
|
||
private: | ||
|
||
void resize_unscale(const cv::Mat &mat, | ||
cv::Mat &mat_rs, | ||
int target_height, | ||
int target_width, | ||
YOLOv6ScaleParams &scale_params); | ||
|
||
void normalized(cv::Mat &input_mat); | ||
|
||
void generate_bboxes(const YOLOv6ScaleParams &scale_params, | ||
std::vector<types::Boxf> &bbox_collection, | ||
float* output, | ||
float score_threshold, int img_height, | ||
int img_width); // r rescale & exclude | ||
|
||
|
||
void nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output, | ||
float iou_threshold, unsigned int topk, unsigned int nms_type); | ||
|
||
public: | ||
void detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes, | ||
float score_threshold = 0.25f, float iou_threshold = 0.45f, | ||
unsigned int topk = 100, unsigned int nms_type = NMS::OFFSET); | ||
}; | ||
} | ||
#endif //LITE_AI_TOOLKIT_TRT_YOLOV6_H | ||
|