Skip to content

DeepTrackAI/holo2bright_dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Holo2Bright Dataset (holo2bright_dataset)

Overview

This DeepTrackAI repository provides a copy of the Holo2Bright dataset, consisting of unpaired holographic and bright-field microscopy images of marine microplankton.
The dataset originates from [Bachimanchi et al., eLife, 2022] (https://doi.org/10.7554/eLife.79760), where it was used to train and evaluate deep learning models for reconstructing bright-field images from holograms.

Summary

  • Number of images:
    • Training set: 4,500 holographic + 880 bright-field images
    • Test set: 4,500 holographic + 244 bright-field images
  • Image size: 256 × 256 pixels
  • Format: 8-bit grayscale PNG

Original Source

  • Title: Microplankton life histories revealed by holographic microscopy and deep learning
  • Authors: Harshith Bachimanchi, Benjamin Midtvedt, Daniel Midtvedt, Erik Selander, Giovanni Volpe
  • Journal: eLife, 11:e79760 (2022)
  • DOI: 10.7554/eLife.79760

If you use this dataset in your research, you must follow the licensing requirements and properly attribute the original authors.


Dataset Structure

/holo2bright_dataset
├── train/
│   ├── holograms/          # 4,500 holographic images (256×256 PNG)
│   └── brightfield/        # 880 bright-field images (256×256 PNG)
└── test/
    ├── holograms/          # 4,500 holographic images (256×256 PNG)
    └── brightfield/        # 244 bright-field images (256×256 PNG)

How to Access the Data

Clone the Repository

git clone https://github.com/DeepTrackAI/holo2bright_dataset
cd holo2bright_dataset

Attribution

Cite the paper:

Bachimanchi H, Midtvedt B, Midtvedt D, Selander E, Volpe G. Microplankton life histories revealed by holographic microscopy and deep learning. eLife 11:e79760 (2022). https://doi.org/10.7554/eLife.79760

@article{bachimanchi2022microplankton,
  title={Microplankton life histories revealed by holographic microscopy and deep learning},
  author={Bachimanchi, Harshith and Midtvedt, Benjamin and Midtvedt, Daniel and Selander, Erik and Volpe, Giovanni},
  journal={eLife},
  volume={11},
  pages={e79760},
  year={2022},
  publisher={eLife Sciences Publications Limited},
  doi={10.7554/eLife.79760}
}

License

This dataset is shared under the Creative Commons Attribution 4.0 International License, following the original licensing terms.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •