Skip to content

DarkStarStrix/DataVolt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

74 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataVolt: Enterprise Data Pipeline Framework

DataVolt Logo

Coverage License Version Python PyPI CI

Introduction

DataVolt is an enterprise-grade framework for building and maintaining scalable data engineering pipelines. It provides a comprehensive suite of tools for data ingestion, transformation, and processing, enabling organizations to standardize their data operations and speed up development cycles.

Core Capabilities

DataVolt delivers three primary value propositions:

  1. Pipeline Standardization: Unified interfaces for data ingestion, transformation, and export operations
  2. Operational Efficiency: Automated workflow orchestration and preprocessing capabilities
  3. Enterprise Integration: Native support for cloud storage, SQL databases, and machine learning frameworks

Technical Architecture

DataVolt/
├── loaders/           # Data Ingestion Layer
│   ├── __init__.py
│   ├── csv_loader.py  # CSV Processing Engine
│   ├── sql_loader.py  # SQL Database Connector
│   ├── s3_loader.py   # Cloud Storage Interface
│   └── custom_loader.py # Extensibility Framework
├── preprocess/        # Data Transformation Layer
│   ├── __init__.py
│   ├── cleaning.py    # Data Cleansing Engine
│   ├── encoding.py    # Feature Encoding Module
│   ├── scaling.py     # Normalization Framework
│   ├── feature_engineering.py # Feature Generation Engine
│   └── pipeline.py    # Pipeline Orchestrator
└── ext/               # Extension Layer
    ├── logger.py      # Logging Framework
    └── custom_step.py # Custom Pipeline Interface

Installation

Install via pip:

pip install datavolt

For improved dependency management:

uv install datavolt

Implementation Guide

Data Ingestion

from datavolt.loaders.csv_loader import CSVLoader

# Initialize data ingestion pipeline
loader = CSVLoader(file_path="data.csv")
dataset = loader.load()

Data Transformation

from datavolt.preprocess.pipeline import PreprocessingPipeline
from datavolt.preprocess.scaling import StandardScaler
from datavolt.preprocess.encoding import OneHotEncoder

# Configure transformation pipeline
pipeline = PreprocessingPipeline([
    StandardScaler(),
    OneHotEncoder()
])

# Execute transformations
processed_dataset = pipeline.run(dataset)

Enterprise Applications

DataVolt is designed for organizations requiring:

  • Standardized data preprocessing workflows
  • Scalable machine learning pipelines
  • Reproducible feature engineering processes
  • Integration with existing data infrastructure

Contributing

We welcome contributions from the community. Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/enhancement)
  3. Commit changes (git commit -am 'Add enhancement')
  4. Push to branch (git push origin feature/enhancement)
  5. Open a Pull Request

License

DataVolt is distributed under the MIT License. See LICENSE for details.

Support


Performance Benchmark Report

Generated on: 2025-01-21 12:15:12 Number of runs per loader: 3

Loader: CSVLoader

Time Taken: 0.06-second Memory Used: 3.02 MB CPU Usage: 75.2% Throughput: 167,002 records/second Data Size: 10,000 records

Performance Metrics:

  • Memory efficiency: 3,307.49 records/MB
  • Processing speed: 0.01 ms/record

loader_performance.png

DataVolt: Empowering Data Engineering Excellence