DataVolt is an enterprise-grade framework for building and maintaining scalable data engineering pipelines. It provides a comprehensive suite of tools for data ingestion, transformation, and processing, enabling organizations to standardize their data operations and speed up development cycles.
DataVolt delivers three primary value propositions:
- Pipeline Standardization: Unified interfaces for data ingestion, transformation, and export operations
- Operational Efficiency: Automated workflow orchestration and preprocessing capabilities
- Enterprise Integration: Native support for cloud storage, SQL databases, and machine learning frameworks
DataVolt/
├── loaders/ # Data Ingestion Layer
│ ├── __init__.py
│ ├── csv_loader.py # CSV Processing Engine
│ ├── sql_loader.py # SQL Database Connector
│ ├── s3_loader.py # Cloud Storage Interface
│ └── custom_loader.py # Extensibility Framework
├── preprocess/ # Data Transformation Layer
│ ├── __init__.py
│ ├── cleaning.py # Data Cleansing Engine
│ ├── encoding.py # Feature Encoding Module
│ ├── scaling.py # Normalization Framework
│ ├── feature_engineering.py # Feature Generation Engine
│ └── pipeline.py # Pipeline Orchestrator
└── ext/ # Extension Layer
├── logger.py # Logging Framework
└── custom_step.py # Custom Pipeline Interface
Install via pip:
pip install datavolt
For improved dependency management:
uv install datavolt
from datavolt.loaders.csv_loader import CSVLoader
# Initialize data ingestion pipeline
loader = CSVLoader(file_path="data.csv")
dataset = loader.load()
from datavolt.preprocess.pipeline import PreprocessingPipeline
from datavolt.preprocess.scaling import StandardScaler
from datavolt.preprocess.encoding import OneHotEncoder
# Configure transformation pipeline
pipeline = PreprocessingPipeline([
StandardScaler(),
OneHotEncoder()
])
# Execute transformations
processed_dataset = pipeline.run(dataset)
DataVolt is designed for organizations requiring:
- Standardized data preprocessing workflows
- Scalable machine learning pipelines
- Reproducible feature engineering processes
- Integration with existing data infrastructure
We welcome contributions from the community. Please follow these steps:
- Fork the repository
- Create a feature branch (
git checkout -b feature/enhancement
) - Commit changes (
git commit -am 'Add enhancement'
) - Push to branch (
git push origin feature/enhancement
) - Open a Pull Request
DataVolt is distributed under the MIT License. See LICENSE
for details.
- Documentation: DataVolt Docs
- Issue Tracking: GitHub Issues
- Professional Support: Contact allanw.mk@gmail.com
Performance Benchmark Report
Generated on: 2025-01-21 12:15:12 Number of runs per loader: 3
Time Taken: 0.06-second Memory Used: 3.02 MB CPU Usage: 75.2% Throughput: 167,002 records/second Data Size: 10,000 records
Performance Metrics:
- Memory efficiency: 3,307.49 records/MB
- Processing speed: 0.01 ms/record
DataVolt: Empowering Data Engineering Excellence