-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Make 'cmaes.cma' module private with deprecation message #46
Conversation
Benchmark of Rosenbrock function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rosenbrock Function
SolversID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 2d3de16774795cafa1c55d9a3930429d0feeccdff85f939e461dc9524da86710recipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 481138bcec61d254d11b91674720136f8e38bdb5928a8a149da588278c4d6ca0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: fa3c593805d48da4e3e5c06929acd0a92657b18a36c0e5529fc6108268008949recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_rosenbrock.py"
]
}
} specification: {
"name": "Rosenbrock Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rosenbrock",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: bb45956ae6a92ec6165f31c9bc7cbdbf12dea94976fe60de037d520f5657fe2a
ID: 2ec23b47296c806a7b9ff1c9b2052543c73c048ef81a30ba8fdb0d6e462d518d
ID: f9ba6ad7a77b7aa64f50562e2ee93f5e14701573ff75525949df4a55327ca2e3
|
Benchmark of Himmelblau function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Himmelblau Function
SolversID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 2d3de16774795cafa1c55d9a3930429d0feeccdff85f939e461dc9524da86710recipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 481138bcec61d254d11b91674720136f8e38bdb5928a8a149da588278c4d6ca0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: c7b76605f4f5c667f11ced8a18554e8e83c157ccba2dfbb1ebfe705c9dcaf1d4recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_himmelblau.py"
]
}
} specification: {
"name": "Himmelblau Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -4.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -4.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Himmelblau",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: f217a39412333ce79dc820f3f52c0a8fce663cb8c7fe46337ad40c552d03adc4
ID: 398e5c43f8a73c7bf520a798969a4d51ecb29dfb756f42958c04f528e693fbaa
ID: 6bdf1f82a81f12f441ce55e3ac8035846f93fcfc14602ca2886dab202d60c54b
|
Benchmark of Six-Hump Camel function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Six-Hump Camel Function
SolversID: d68b081af9fa6cddfbb0253616526b338f391dc7050393134faec93c510a22a2recipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: 2d3de16774795cafa1c55d9a3930429d0feeccdff85f939e461dc9524da86710recipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"cmaes"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 481138bcec61d254d11b91674720136f8e38bdb5928a8a149da588278c4d6ca0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/optuna_solver.py",
"pycma"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.5.0, kurobako-py=0.1.7"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: 6467a2061b1fa5c028c60874a64fabe9c1b0ab7d776af0da0df6cfb4dfd02ba8recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_six_hump_camel.py"
]
}
} specification: {
"name": "Six-Hump Camel Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Six-Hump Camel",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: f31b73c660adb72fed697d11c15c80ce13258758a11825018770b9839389d350
ID: 7eccca2d9d5d2604f5018993bf7e71a5d084984a15838857191d18063ab98b04
ID: 0f3e974a00f395262cca5c61e98d0b7583bf26605406749ecec81f123eb17e60
|
Currently, we can import "CMA" class in 2 ways.
The latter one is a bit redundant than the former one.
In this PR, I rename
cma.py
into_cma.py
and showing the warning message when importingcmaes.cma
module to keep backward compatibility.