-
Notifications
You must be signed in to change notification settings - Fork 69
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Deprecate patch_fast_itersection_search_space #28
Conversation
# https://github.com/optuna/optuna/pull/885 | ||
if get_optuna_version() < (1, 3): | ||
# CMA-ES sampler is added at v1.3.0. | ||
# https://github.com/optuna/optuna/pull/1142 is added at v1.4.0. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Benchmark of Six-Hump Camel function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Six-Hump Camel Function
SolversID: 29b0b413e0e229de860c855bd7258ff2335c36821b0877f4c28fe96fc82afb3crecipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.4"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: c68f7e3ddfa8d05b82f4a692bd53a2deeacbf96ce9359399548fed3549065c0arecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_cmaes.py"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 40c000519d4870c8307296d20258c148edf4b09499b6cc18d348e4163d4feee0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_pycma.py"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: 6467a2061b1fa5c028c60874a64fabe9c1b0ab7d776af0da0df6cfb4dfd02ba8recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_six_hump_camel.py"
]
}
} specification: {
"name": "Six-Hump Camel Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Six-Hump Camel",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 469a87b7e952a37da5c21e58f936acf5371e438f48236c91a18cd7633c167f74
ID: ec87f9d75b4551d7c4f1276680bc0a60a64506587fa4de30e0aa97e5eb2ead07
ID: d4959c9229e36f6dd07748b067776a90367bc4fbbca3e5c71c6f1f0c992383c6
|
Benchmark of Himmelblau function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Himmelblau Function
SolversID: 29b0b413e0e229de860c855bd7258ff2335c36821b0877f4c28fe96fc82afb3crecipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.4"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: c68f7e3ddfa8d05b82f4a692bd53a2deeacbf96ce9359399548fed3549065c0arecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_cmaes.py"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 40c000519d4870c8307296d20258c148edf4b09499b6cc18d348e4163d4feee0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_pycma.py"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: c7b76605f4f5c667f11ced8a18554e8e83c157ccba2dfbb1ebfe705c9dcaf1d4recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_himmelblau.py"
]
}
} specification: {
"name": "Himmelblau Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -4.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -4.0,
"high": 4.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Himmelblau",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 0410569911381c38a4dfc80ffe1f34c3f63df093167bfba6bbaabb769ccd411e
ID: 76c58f16fcc180ac7157c75efcbde679bca22909ba3b6180a8972f84ec195ec0
ID: ef1fd063a7e0b6d2c0e5b3aa01f3a6c179ae712a8dfc47cea7f7d0e7694fb32b
|
Benchmark of Rosenbrock function
Please refer to "A Strategy for Ranking Optimizers using Multiple Criteria" for the ranking strategy used in this report. Please expand here for more details.Table of ContentsOverall Results
Individual Results(1) Problem: Rosenbrock Function
SolversID: 29b0b413e0e229de860c855bd7258ff2335c36821b0877f4c28fe96fc82afb3crecipe: {
"random": {}
} specification: {
"name": "Random",
"attrs": {
"version": "kurobako_solvers=0.1.4"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"LOG_UNIFORM_DISCRETE",
"CATEGORICAL",
"CONDITIONAL",
"MULTI_OBJECTIVE",
"CONCURRENT"
]
} ID: c68f7e3ddfa8d05b82f4a692bd53a2deeacbf96ce9359399548fed3549065c0arecipe: {
"name": "cmaes",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_cmaes.py"
]
}
} specification: {
"name": "cmaes",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ID: 40c000519d4870c8307296d20258c148edf4b09499b6cc18d348e4163d4feee0recipe: {
"name": "pycma",
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/solver_pycma.py"
]
}
} specification: {
"name": "pycma",
"attrs": {
"github": "https://github.com/optuna/optuna",
"paper": "Akiba, Takuya, et al. \"Optuna: A next-generation hyperparameter optimization framework.\" Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019.",
"version": "optuna=1.3.0, kurobako-py=0.1.5"
},
"capabilities": [
"UNIFORM_CONTINUOUS",
"UNIFORM_DISCRETE",
"LOG_UNIFORM_CONTINUOUS",
"CATEGORICAL",
"CONDITIONAL",
"CONCURRENT"
]
} ProblemsID: fa3c593805d48da4e3e5c06929acd0a92657b18a36c0e5529fc6108268008949recipe: {
"command": {
"path": "python",
"args": [
"/home/runner/work/cmaes/cmaes/benchmark/problem_rosenbrock.py"
]
}
} specification: {
"name": "Rosenbrock Function",
"attrs": {},
"params_domain": [
{
"name": "x1",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
},
{
"name": "x2",
"range": {
"type": "CONTINUOUS",
"low": -5.0,
"high": 10.0
},
"distribution": "UNIFORM",
"constraint": null
}
],
"values_domain": [
{
"name": "Rosenbrock",
"range": {
"type": "CONTINUOUS"
},
"distribution": "UNIFORM",
"constraint": null
}
],
"steps": 1
} StudiesID: 988b3ee2fc93f867e9f50a8e14729e90a5ff829cc4d3f741663efeeefa1bf288
ID: 9ca9592a3433ddcf1fa317be0eee41b517b701a8f54b0ece0bcb22c2b8155241
ID: 733e2e2cb83d33069bf588d2a335c53d80e7c65051e677999aa541738a4494a4
|
No description provided.