Skip to content

CovERUshKA/ddnet-nn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ddnet-nn

To compile you would need to install libtorch with cuda support.

Steps to build on Windows:

  1. Install CUDA the same version that libtorch with cuda support is built for.
  2. Install Nsight NVTX from CUDA 11.8.
  3. Download libtorch with cuda support and add it to ddnet-libs
  4. Call cmake so it will generate files to build
  5. Link dependencies in Visual Studio for DDNet-Server:

    Libraries:

    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\c10.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\kineto.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\caffe2_nvrtc.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\c10_cuda.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\torch.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\torch_cuda.lib
    C:\Program Files\NVIDIA Corporation\NvToolsExt\lib\x64\nvToolsExt64_1.lib
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\lib\torch_cpu.lib
    -INCLUDE:?warp_size@cuda@at@@YAHXZ
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\lib\x64\cudart.lib

    Include directories

    C:/Program Files/NVIDIA Corporation/NvToolsExt
    C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v12.4/include
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\include\torch\csrc\api\include
    D:\GitHub\ddnet-nn\ddnet-libs\libtorch-win-shared-with-deps-latest+cu\libtorch\include
  6. Now try to compile DDNet-Server.
  7. Copy DLL-s from libtorch folder to run it

Example of trained neural network - https://www.youtube.com/watch?v=LaiUJSzhEJc